博碩士論文 108521104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.133.141.71
姓名 周昱陞(Yu-Sheng Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用Mask-RCNN於中風患者之白質病變自動分割及量化
(Automated Segmentation and Quantification of White Matter Hyperintensities Using Mask R-CNN in Stroke Patients)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 白質病變(White matter hyperintensity)是腦部疾病的一個預測因子,與中風、頑固性憂鬱症、癡呆和死亡的風險有顯著的相關性。白質病變的觀測需要對T2加權磁共振成像(T2W MRI)進行資料視覺化,讓白質病變以亮度增加的形式表現在影像上。本研究的目的是使用人工神經網路在T2加權磁共振成像快速且準確地自動分割白質病變,並且自動計算出病變的體積,輔助醫師的診斷及治療。
一般醫學影像辨識的AI輔助大多採用U net人工神經網路架構,本研究所採用的是運算速度更快且可以實例分割的Mask R-CNN,以兩階段神經網路的方式偵測。第一階段是以Mask R-CNN進行影像前處理,影像的前處理包括去除頭骨、眼球等經常是被人工神經網路誤判為白質病變的區域,只保留腦實質的部分作為後續輸入。因為頭骨與腦組織的影像強弱關係會受到機型與參數影響,本研究對留下的腦實質影像進行影像正規化,來降低不同參數與機型生成的磁共振成像差異,並提升白質病變與非白質病變組織的影像特徵差異。第二階是以Mask R-CNN對白質病變進行圖像分割,將分割的結果依據磁共振成像的像素間距計算白質病變體積的毫升數。人工神經網路的訓練資料來源是荷蘭UMC Utrecht醫院20名有白質病變的病人影像,測試資料來源是聯新國際醫院收集的10位有白質病變的病人影像,第一階段的訓練資料標記是基於FMRIB Software Library的Brain Extraction生成,並經過手動修正的二值化影像標記。
研究結果顯示使用Mask R-CNN進行腦提取的Dice係數達到96.06%。白質病變自動分割的Dice係數為55.69%,對白質病變自動分割的體積與實際體積計算相關性分析達到90.3%,運用迴歸分析計算量化白質病變的成果,判斷係數R2達到0.949。
研究結論為Mask R-CNN對於白質病變的分割及量化可以輔助醫師做為臨床參考,結合影像正規化與運用神經網路剔除干擾資訊的方法,可有效的提高自動辨識的準確率。
摘要(英) White matter hyperintensity (WMH) is a predictor of brain diseases and has a significant correlation with the risk of stroke, refractory depression, dementia, and death. White matter lesions are usually visible in T2-weighted magnetic resonance imaging (T2W MRI) as increased brightness. The purpose of this thesis is to use artificial neural networks to develop an automated algorithm for fast and accurate segmentation and quantification of white matter lesions with the aim of assisting physicians in diagnosis, prognosis and treatment.
The artificial neural network architecture used in this research was the Mask R-CNN, which is capable of fast instance segmentation. The WMH segmentation was preceded by image preprocessing as the first stage of the entire process. The so-called brain extraction was conducted using Mask R-CNN to scrape and remove the images of the skull, eyeballs, etc., which would often be mistakenly identified as white matter lesions. Only the brain parenchyma was extracted for subsequent processing. Image normalization on the brain parenchyma was performed to compensate for the intensity difference caused by MRI acquisitions using scanners with different brands and parameters. The second stage was to segment the white matter lesions with Mask R-CNN and calculate the volume of the white matter lesions based on the pixel sizes. The training data were the MRIs of 20 patients with white matter lesions from UMC Utrecht Hospital, the Netherlands, which is open data for public use. The test data were the MRIs of 10 patients with white matter lesions collected in Landseed International Hospital, Ping-Jhen, Taoyuan. The brain masks for brain extraction were generated with the FMRIB software library’s brain extraction system and manually corrected to binarized masks.
The research results show that the Dice coefficient of brain extraction using Mask R-CNN reached 96.06%. The Dice coefficient of the automated white matter hyperintensity segmentation was 55.69%. The correlation coefficient between the automatedly segmented volume and the actual volume reached 90.3%. The R2 value of the linear regression to predict the actual WMH volume from the automatedly segmented volume was 0.949.
This study concludes that segmentation and quantification of white matter lesions using Mask R-CNN can attain a promising performance. Measures such as the extraction of brain parenchyma and intensity normalization have been helpful in eliminating the effect of interferences.
關鍵字(中) ★ 深度學習
★ 人工神經網路
★ 白質病變
關鍵字(英) ★ Deep Learning
★ Artificial Neural Network
★ White Matter Hyperintensities
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的與問題 2
1.3 研究流程與論文結構 3
第二章 文獻探討 4
2.1 白質病變 4
2.2 核磁共振成像 4
2.3 缺血性中風 5
2.4 影像處理 6
2.5 深度學習 9
2.6 其他白質病變偵測方法 13
第三章 研究方法 16
3.1 訓練資料來源 16
3.2 Mask R-CNN網路架構演進歷程 17
3.3 影像前處理 29
3.4 影像正規化 35
3.5 圖像分割 36
3.6 病變體積計算 37
3.7 相關性分析 37
3.8 線性回歸分析 40
3.9 評估指標 40
第四章 研究結果 44
4.1 影像前處理結果 44
4.2 影像正規化結果 47
4.3 白質病變自動圖像分割結果 48
4.4 體積計算結果 52
4.5 相關性分析 54
4.6 線性迴歸分析 56
4.7 白質病變體積對分割準確度之影響 57
第五章 討論 59
第六章 結論與未來展望 65
6.1 結論 65
6.2 未來展望 66
參考文獻 67
附錄 1 測試資料之白質病變分割結果 76
參考文獻 [1] 宋碧姍, 陳志弘, “大腦白質病變與接受靜脈血栓溶解治療後症狀性腦出血之風險” 台灣腦中風學會會訊‧第 22 卷第 2 期, 2015.
[2] Leonardo Pantoni, “Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges,” The Lancet Neurology, vol. 9, no. 7, pp. 689–701, 2010. doi:10.1016/S1474-4422(10)70104-6
[3] Joanna M Wardlaw, Eric E Smith, Geert J Biessels, Charlotte Cordonnier, Franz Fazekas, Richard Frayne, Richard I Lindley, John T O′Brien, Frederik Barkhof, Oscar R Benavente, Sandra E Black, Carol Brayne, Monique Breteler, Hugues Chabriat, Charles Decarli, Frank-Erik de Leeuw, Fergus Doubal, Marco Duering, Nick C Fox, Steven Greenberg, Vladimir Hachinski, Ingo Kilimann, Vincent Mok, Robert van Oostenbrugge, Leonardo Pantoni, Oliver Speck, Blossom C M Stephan, Stefan Teipel, Anand Viswanathan, David Werring, Christopher Chen, Colin Smith, Mark van Buchem, Bo Norrving, Philip B Gorelick, Martin Dichgans, “Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.” The Lancet. Neurology, vol. 12, no. 8, pp. 822–38, 2013. doi: 10.1016/S1474-4422(13)70124-8
[4] Zhong, Y., Utriainen, D., Wang, Y., Kang, Y., & Haacke, E. M., “Automated White Matter Hyperintensity Detection in Multiple Sclerosis Using 3D T2 FLAIR.” International journal of biomedical imaging, 2014. doi:10.1155/2014/239123
[5] J Matthijs Biesbroek, Nick A Weaver, Geert Jan Biessels, “Lesion location and cognitive impact of cerebral small vessel disease,” Clinical Science, vol. 131, no. 8, pp. 715–728, 2017. doi:10.1042/CS20160452
[6] Niels D Prins, Philip Scheltens, “White matter hyperintensities, cognitive impairment and dementia: an update,” Nature Reviews Neurology, vol. 11, no. 3, pp. 157–165, 2015. doi:10.1038/nrneurol.2015.10
[7] John C. Gore, “Magnetic Resonance Imaging”, An International Journal of Basic Research and Clinical Applications, Transformative Journal, 2021.
[8] Brandi R French, Raja S Boddepalli, Raghav Govindarajan, “Acute Ischemic Stroke: Current Status and Future Directions.”, Missouri medicine vol. 113,no.6 pp. 480-486, 2016.
[9] Filipe Brogueira Rodrigues, Joana Briosa Neves, Daniel Caldeira, José M Ferro, Joaquim J Ferreira, João Costa, “Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis”, BMJ, 2016, doi:10.1136/bmj.i1754
[10] Rafael C. Gonzalez, “Morphological Image Processin”, Digital Image Processing, Third Edition pp. 652-661
[11] Rafael C. Gonzalez, R. E. Woods, “Morphological Image Processing”, Digital Image Processing, Fourth Edition. pp.529-560 pp. 693-701
[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, C. Lawrence Zitnick, “Microsoft COCO: Common Objects in Context.”, Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, Springer, vol 8693. (2014) doi:10.1007/978-3-319-10602-1_48
[13] Thinh Tran Pham Quoc, Tam Tran Linh, Thu Nguyen Tran Minh, “Comparing U-Net Convolutional Network with Mask R-CNN in Agricultural Area Segmentation on Satellite Images,” 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), 2020, pp. 124-129, doi: 10.1109/NICS51282.2020.9335856.
[14] Madeleine S. Durkee, Rebecca Abraham, Junting Ai, Jordan D. Fuhrman, Marcus R. Clark, Maryellen L. Giger, “Comparing Mask R-CNN and U-Net architectures for robust automatic segmentation of immune cells in immunofluorescence images of Lupus Nephritis biopsies,” Proceedings Volume 11647, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX; 116470X, 2021, doi:10.1117/12.2577785
[15] Pim Moeskops, Jeroen de Bresser, Hugo J. Kuijf, Adriënne M. Mendrik, Geert Jan Biessels, Josien P.W. Pluim, Ivana Išgum, “Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI,” NeuroImage: Clinical, Volume 17, 2018, Pages 251-262, ISSN 2213-1582, doi:10.1016/j.nicl.2017.10.007.
[16] R. Guerrero, C. Qin, O. Oktay, C. Bowles, L. Chen, R. Joules, R. Wolz, M.C. Valdés-Hernández, D.A. Dickie, J. Wardlaw, D. Rueckert, “White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks,” NeuroImage: Clinical, Volume 17, 2018, Pages 918-934, ISSN 2213-1582, doi: 10.1016/j.nicl.2017.12.022.
[17] J. Wu, Y. Zhang, K. Wang and X. Tang, "Skip Connection U-Net for White Matter Hyperintensities Segmentation From MRI," IEEE Access, vol. 7, pp. 155194-155202, 2019, doi: 10.1109/ACCESS.2019.2948476.
[18] M. d. C. Valdés Hernández, L.C. Maconick, S. Muñoz Maniega, Wang X., Wiseman S., Armitage P.A., Doubal F.N., Makin S., Sudlow C.L.M., Dennis M.S., Deary I.J., Bastin M., Wardlaw J.M. “A comparison of location of acute symptomatic vs. ‘silent’ small vessel lesions” Stroke, 10 (7) (2015), pp. 1044-1050
[19] R Bakshi, S Ariyaratana, R H Benedict, L Jacobs, “Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions.” Archives of neurology, p.p. 742–748. doi:10.1001/archneur.58.5.742
[20] Hugo J Kuijf, J Matthijs Biesbroek, Jeroen De Bresser, Rutger Heinen, Simon Andermatt, Mariana Bento, Matt Berseth, Mikhail Belyaev, M Jorge Cardoso, Adria Casamitjana, D Louis Collins, Mahsa Dadar, Achilleas Georgiou, Mohsen Ghafoorian, Dakai Jin, April Khademi, Jesse Knight, Hongwei Li, Xavier Llado, Miguel Luna, Qaiser Mahmood, Richard McKinley, Alireza Mehrtash, Sebastien Ourselin, Bo-Yong Park, Hyunjin Park, Sang Hyun Park, Simon Pezold, Elodie Puybareau, Leticia Rittner, Carole H Sudre, Sergi Valverde, Veronica Vilaplana, Roland Wiest, Yongchao Xu, Ziyue Xu, Guodong Zeng, Jianguo Zhang, Guoyan Zheng, Christopher Chen, Wiesje van der Flier, Frederik Barkhof, Max A Viergever, Geert Jan Biessels, “Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities; Results of the WMH Segmentation Challenge.” IEEE transactions on medical imaging vol. 38, 2019, pp. 2556-2568. doi:10.1109/TMI.2019.2905770
[21] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation” 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580-587, doi:10.1109/CVPR.2014.81.
[22] Hedi Harzallah, Frédéric Jurie, Cordelia Schmid., “Combining efficient object localization and image classification.”, 2009 IEEE 12th International Conference on Computer Vision, 2009, pp. 237-244, doi:10.1109/ICCV.2009.5459257.
[23] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers and A. W. M. Smeulders, “Selective Search for Object Recognition”, International Journal of Computer Vision, vol. 104, no. 2, pp. 154-171, 2013. doi:10.1007/s11263-013-0620-5
[24] Sakshi Patel, Shivani Sihmar, Aman Jatain, “A study of hierarchical clustering algorithms,” 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), 2015, pp. 537-541.
[25] Prasad Bandyopadhyay, Chiranjeet Dey, Paramita Biswas, “A Comparative Analysis Approach of Unsupervised Techniques to Explore Their Potentiality in Microarray Data.,” 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 2020, pp. 565-570, doi:10.1109/ICCCA49541.2020.9250833.
[26] Navaneeth Bodla, Bharat Singh, Rama Chellappa, Larry S. Davis, “Soft-NMS — Improving Object Detection with One Line of Code,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 5562-5570, doi:10.1109/ICCV.2017.593.
[27] Adrian Rosebrock, “Intersection over Union (IoU) for object detection”, pyimagesearch, 2016.
[28] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell., “Caffe: An open source convolutional architecture for fast feature embedding.”, Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678, doi:10.1145/2647868.2654889
[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton., “ImageNet classification with deep convolutional neural networks.”, Communications of the ACM, 60., 2012, pp.84-90, doi:10.1145/3065386
[30] Sourish Ghosh, Anasuya Dasgupta, Aleena Swetapadma, “A Study on Support Vector Machine based Linear and Non-Linear Pattern Classification”, 2019 International Conference on Intelligent Sustainable Systems (ICISS), 2019, pp. 24-28, doi:10.1109/ISS1.2019.8908018.
[31] Ross Girshick, “Fast R-CNN”,2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448, doi:10.1109/ICCV.2015.169.
[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904-1916 (2015) doi:10.1109/TPAMI.2015.2389824.
[33] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, IEEE Transactions on Pattern Analysis and Machine Intelligence., vol. 39, no. 6, pp. 1137-1149, 2017, doi:10.1109/TPAMI.2016.2577031.
[34] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, “Mask R-CNN,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, doi:10.1109/ICCV.2017.322.
[35] Jonathan Long, Evan Shelhamer, Trevor Darrell, “Fully convolutional networks for semantic segmentation,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440, doi:10.1109/CVPR.2015.7298965.
[36] Anthony D. Yao, Derrick L. Cheng, Ian Pan, Felipe Kitamura, “Deep Learning in Neuroradiology: A Systematic Review of Current Algorithms and Approaches for the New Wave of Imaging Technology,” Radiology. Artificial intelligence vol. 2, 2020, doi:10.1148/ryai.2020190026
[37] Martina Udovičić, Ksenija Baždarić, Lidija Bilić-Zulle, Mladen Petrovečki, “What we need to know when calculating the coefficient of correlation”, Lessons in biostatistics, Biochemical Medica, 2007.doi:10.11613/BM.2007.002
[38] Kavitha S, Varuna S and Ramya R, “A comparative analysis on linear regression and support vector regression,” 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 2016, pp. 1-5, doi:10.1109/GET.2016.7916627.
[39] Linden, Ariel., “Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis.” Journal of evaluation in clinical practice vol. 12, 2006, doi:10.1111/j.1365-2753.2005.00598
[40] Kai Ming Ting, “Precision and Recall.”, Encyclopedia of Machine Learning., Springer, 2011, doi:10.1007/978-0-387-30164-8_652
[41] Alonso Gragera, Vorapong Suppakitpaisarn, “Semimetric Properties of Sørensen-Dice and Tversky Indexes.” Computer Science, vol 9627. Springer, doi:10.1007/978-3-319-30139-6_27
[42] Hayit Greenspan, Bram van Ginneken, Ronald M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1153–1159, 2016, doi:10.1109/TMI.2016.2553401.
[43] Anca Hâncu, Irene Răşanu, Gabriela Butoi, “White Matter Changes in Cerebrovascular Disease: Leukoaraiosis” Advances in Brain, 2011, doi: 10.5772/30565
[44] 陳加忠, “決定係數R2之判斷標準”, 2021年7月28日取自http://amebse.nchu.edu.tw/new_page_535.htm
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2021-9-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明