博碩士論文 108521112 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.219.75.202
姓名 蘇昱綸(Yu-Lun Su)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合黎曼幾何與領域自適應方法於想像運動腦波分類
(The Classification Of Motor Imagery EEG Based On Riemannian Geometry And Domain Alignment)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-28以後開放)
摘要(中) 腦電訊號(EEG)會隨時間變化造成的不平穩特性與受試者之間不同的身心狀況帶來的差異性,導致難以訓練出高通用性的分類模型,並且會因錄製訊號時間長造成使用者疲勞,使腦機介面(BCI)在實際應用上受到限制,若能有效利用先前錄製的EEG遷移至當前的分類任務,使分類器能有足夠的訓練資料藉以提升分類準確度即可解決上述問題。為此本論文提出ELA-TSM領域自適應方法用於二分類想像運動訊號,藉由將大量帶有標籤樣本的源域遷移至少量標籤樣本的目標域中,首先會以歐基里德中心歸一(Euclidean Recenter)讓源域與目標域資料圍繞在同一中心,降低領域之間的差異性以最佳化共同空間型樣法(CSP)在不同領域的性能並使兩類訊號盡可能地分開,再結合標籤對齊法(Label Alignment)以兩類訊號黎曼均值為基準點對齊,最後用黎曼切線空間投影法(Tangent Space Mapping)提取黎曼幾何特徵並投影回歐式空間做分類。實驗使用BCI競賽IV資料集IIa驗證本論文演算法用於跨受試者、跨時段以及跨類別任務,結果顯示在目標域具有30筆帶標籤訓練資料的條件下平均分類準確率分別可達78.38%、80.37%及76.72%,且在資料集IVa於跨受試者任務可達85.22%。此外也會使用t-SNE視覺化做佐證,提供直觀的效果展示。
摘要(英) The characteristics of EEG signals are non-stationary caused by highly subject various individual differences, such as mentality and different individuals. Which makes it difficult to train a highly robust classification model and spend a lot of time recording EEG. It cause brain-computer interface (BCI) limited in practical applications. If the previously collected EEG can be transfered to the current classification task, many shortcomings can be solved. How to transfer the signal so that the classifier can have enough training data to improve the accuracy rate is a big challenge. This paper proposes a domain adaptation method called ELA-TSM, which can transfer source domain to the target domain. First, we use Euclidean Recenter on the source domain and the target domain. All data will be centered on the same point to reduce the difference between the domain to optimize the common space pattern method (CSP), and then separate two classes data. Next step is to use the Label Alignment method align the source label space with the target label space. Finally use the Riemann Tangent Space Mapping(TSM) to project the data from the Riemann space back to the Euclidean space for classification. In the part of experiment we use two BCI competition datasets to verify the feasibility of our method in Cross-subjects, Cross sessions and Crossclasses tasks. We also use t-SNE visualization as a proof to provide an intuitive effect display.
關鍵字(中) ★ 腦機介面
★ 領域自適應
★ 黎曼幾何
★ 腦電圖
★ 想像運動
關鍵字(英) ★ Brain-computer interface
★ Electroencephalographic
★ Motor Imagery
★ Transfer learning
★ Domain adaptation
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-4 內容大綱 6
第二章 腦電訊號 7
2-1 腦機介面與想像運動 7
2-2 腦電訊號與採集方法 8
2-3 大腦活動 9
第三章 演算法原理與分析 11
3-1 歐基里德中心歸一(Euclidean Recenter) 11
3-2 共同空間形樣法(Common Spatial Pattern, CSP) 13
3-3 黎曼幾何 19
3-3-1 前言 19
3-3-2 對稱正定矩陣定義與特性 20
3-3-3 黎曼度量與黎曼距離 22
3-3-4 黎曼的指數投影與對數投影 24
3-3-5 黎曼均值 28
3-3-6 黎曼切線空間 30
3-4 標籤對齊法(Label Alignment) 32
3-5 ELA-TSM腦電訊號對齊法 39
第四章 實驗結果與討論 44
4-1 腦電訊號資料 44
4-1-1 BCI Competition IV dataset IIa 44
4-1-2 BCI Competition III Data IVa 45
4-1-3 t-SNE視覺化 46
4-2 比較方法與結果 49
4-2-1 跨受試者遷移 51
4-2-2 跨時段遷移 61
4-2-3 跨類別遷移 65
第五章 結論與未來展望 71
參考文獻 73
參考文獻 [1] Rümeysa İnce, Saliha Seda Adanır1, and Fatma Sevmez, “The inventor of electroencephalography (EEG): Hans Berger,” Child′s Nervous System, 2020.
[2] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J.McFarland, Gert Pfurtscheller, and Theresa M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical Neurophysiology, 2002.
[3] Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica Monaghan, David McAlpine, and Yu Zhang, “A Survey on Deep Learning-based Non-Invasive Brain Signals: Recent Advances and New Frontiers,” Journal of Neural Engineering, 2020.
[4] V. Jayaram, M. Alamgir, Y. Altun, B. Scholkopf, and M. Grosse-Wentrup, “Transfer learning in brain-computer interface,” IEEE Computational Intelligence Magazine, vol. 11, no. 1, pp. 22-30, 2016.
[5] He He and Dongrui Wu, “Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 5, 2020.
[6] Vernon J. Lawhern1, Amelia J. Solon1, Nicholas R. Waytowich, Stephen M. Gordon1, Chou P. Hung1 and Brent J. Lance, “EEGNet: A Compact Convolutional Neural Network 2 for EEG-based Brain-Computer Interfaces,” Journal of Neural Engineering, 2018.
[7] Ji-Hoon Jeong, Byeong-Hoo Lee, Dae-Hyeok Lee, Yong-Deok Yun, and Seong-Whan Lee, “EEG Classification of Forearm Movement Imagery Using a Hierarchical Flow Convolutional Neural Network,” IEEE Access, 2020.
[8] Jin Zhang, Chungang Yan, and Xiaoliang Gong, “Deep convolutional neural network for decoding motor imagery based brain computer interface,” IEEE International Conference on Signal Processing, Communications and Computing, pp. 22-25, 2017.
[9] Liwei Cheng, Duanling Li, Xiang Li, and Shuyue Yu, “The Optimal Wavelet Basis Function Selection in Feature Extraction of Motor Imagery Electroencephalogram Based on Wavelet Packet Transformation,” IEEE Access, 2019.
[10] Zhiwen Zhang, Feng Duan, Jordi Solé-Casals, Josep Dinarès-Ferran, Andrzej Cichocki, Zhenglu Yang, and Zhe Sun “A Novel Deep Learning Approach With Data Augmentation to Classify Motor Imagery Signals,” IEEE Access, 2019.
[11] Haider Alwasiti, Mohd Zuki Yusoff, and Kamran Raza, “Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning,” IEEE Access, 2020.
[12] Lie Yang, Yonghao Song, Ke Ma, and Longhan Xie, “Motor Imagery EEG Decoding Method based on a Discriminative Feature Learning Strategy,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, 2021.
[13] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou, “Spatial patterns underlying population differences in the background EEG,” Brain Topography, vol. 2, pp. 275–284, 1990.
[14] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Optimal Spatial Filtering of Single Trial EEG During Imagined Hand Movement,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446, 2000.
[15] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan, “Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface,” IEEE International Joint Conference on Neural Networks, 2008.
[16] Feifei Qi, Yuanqing Li, and Wei Wu, “Novel Algorithm for Spatio-Temporal Filtering and Classification of Single-Trial EEG,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 12, 2015.
[17] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, “Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal,” IEEE Access, 2020.
[18] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan, “Mutual information-based selection of optimal spatial–temporal patterns for single-trial EEG-based BCIs,” Pattern Recognition, vol. 45, pp. 2137-2144, 2012.
[19] Jing Jin, Chang Liu, Ian Daly, and Yangyang Miao, “Bispectrum-Based Channel Selection for Motor Imagery Based Brain-Computer Interfacing,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 10, 2020.
[20] Yongkoo Park and Wonzoo Chung, “Optimal Channel Selection Using Correlation Coefficient for CSP Based EEG Classification,” IEEE Access, 2020.
[21] A. Barachant, S. Bonnent, M. Congedo, and C. Jutten, “Multiclass brain computer interface classification by Riemannian geometry,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012.
[22] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Riemannian geometry applied to BCI classification,” 9th International Conference on Latent Variable Analysis and Signal Separation, pp. 629-636, 2010.
[23] A. Barachant, S. Bonnet, M. Congedo, and C.Jutten, “Classification of covariance matrices using a Riemannian-based kernel for BCI applications,” Neurocomputing, vol. 112, pp. 172-178, 2013.
[24] Haiping Lu, How-Lung Eng, Cuntai Guan, Konstantinos N. Plataniotis, and Anastasios N. Venetsanopoulos, “Regularized Common Spatial Pattern With Aggregation for EEG Classification in Small-Sample Setting,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2936-2946, 2010.
[25] Sang-Hoon Park , David Lee , and Sang-Goog Lee, “Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, 2018.
[26] Yiming Jin, Mahta Mousavi, Virginia R. de Sa, “Adaptive CSP with subspace alignment for subject-to-subject transfer in motor imagery brain-computer interfaces,” 6th International Conference on Brain-Computer Interface, pp.15-17, 2018.
[27] A. Barachant, S. Bonnet, M. Congedo, and C.Jutten, “Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces,” Neurocomputing, vol. 112, pp. 172-178, 2013.
[28] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “Weighted transfer learning for improving motor imagery-based brain-computer interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 7, pp. 1352-1359, 2019.
[29] A. M. Azab, L. Mihaylova, K. K. Ang, and M. Arvaneh, “A Deep Transfer Convolutional Neural Network Framework for EEG Signal Classification,” IEEE Access, 2019.
[30] Jyoti Singh Kirar and R. K. Agrawal, “Relevant Frequency Band Selection using Sequential Forward Feature Selection for Motor Imagery Brain Computer Interfaces”, IEEE Symposium Series on Computational Intelligence, pp. 18-21, 2018.
[31] G. Pfurtscheller, “Functional brain imaging based on ERD/ERS,” Vision Search, vol. 41, pp. 1257-1260 , 2001.
[32] G. Klem, H. Lüders, H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology,” Electroencephalography and Clinical Neurophysiology, 1999.
[33] W. Tatum, “Ellen R. Grass Lecture : Extraordinary EEG”, Neurodiagnostic Journal, vol. 54, pp. 3-21, 2014.
[34] He He and Dongrui Wu, “Transfer Learning for Brain–Computer Interfaces: A Euclidean Space Data Alignment Approach,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 2, 2020.
[35] F. Fukunaga and W. Koontz, “Applications of the Karhunen-Lo`eve Expansion to Feature Selection and Ordering,” IEEE Transactions on Computers, vol.19, pp. 311-318, 1970.
[36] Victor Guillemin and Alan Pollack, “Differential Topology,” American Mathematical Society, 2010.
[37] P. Thomas Fletcher and Sarang Joshi, “Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors,” Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 87-98, 2004.
[38] Baochen Sun, Jiashi Feng, and Kate Saenko, “Return of Frustratingly Easy Domain Adaptation,” In: AAAI, Computer Vision and Pattern Recognition, pp. 2058-2065, 2016.
[39] Maayan Harel, Shie Mannor, “Learning from multiple outlooks,” International Conference on Machine Learning, pp.401-408, June 2011.
[40] Bharath Hariharan, Jitendra Malik, and Deva Ramanan, “Discriminative decorrelation for clustering and classification,” 12th European Conference on Computer Vision, pp. 459-472, 2012.
[41] R. Leeb, C. Brunner, “BCI Competition 2008 – Graz data set A,” Institute for Knowledge Discovery Graz University of Technology Austria, 2008.
[42] Benjamin Blankertz, Klaus-Robert Müller, Dean Krusienski, Gerwin Schalk, Jonathan R. Wolpaw, Alois Schlögl, Gert Pfurtscheller, José del R. Millán, Michael Schröder, and Niels Birbaumer, “The BCI Competition III: Validating Alternative Approaches to Actual BCI Problems,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no.2, pp. 153-159, 2006.
[43] G. Pfurtscheller, R. Scherer, G. R. Mu¨ller-Putz, and F. H. Lopes da Silva, “Short-lived brain state after cued motor imagery in naive subjects,” European Journal of Neuroscience, vol. 28, pp. 1419–1426, 2008.
[44] Laurens van der Maaten and Geoffrey Hinton, “Visualizing High-Dimensional Data Using t-SNE,” Journal of Machine Learning Research, pp.2579-2605, 2008.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明