博碩士論文 108521113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.222.107.128
姓名 林雅嵐(Ya-Lan Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於共同空間型樣法之加權集成策略應用於想像運動腦波分類
(Classification of Motor Imagery EEG Using Weighted Majority Voting Ensemble based on Common Spatial Pattern)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-28以後開放)
摘要(中) 腦機介面(Brain-Computer Interface, BCI)創建了一條不依賴肌肉運動之通訊控制路徑,以促使大腦和外部機器之間的溝通,這是透過測量大腦電位差訊號所產生之波形進行觀察,將腦電圖(Electroencephalography, EEG)訊號轉換為控制命令,從而擴大使用者意念的應用,為意識清楚但肢體功能不完整的人提供新的溝通方式。想像運動(Motor Imagery)是一種對運動行為的心理意念的過程,而不具任何實際的運動表現,且經研究證實,想像運動和實際運動執行之間的大腦神經激活區域相互重疊,使得與想像運動有關之腦機介面開發成為一個新的研究方向。
基於上述所言,論文旨在開發一應用於想像運動之腦機介面的演算法架構,該架構以共同空間型樣法(Common Spatial Pattern)為基礎 進行特徵提取,並以集成學習(Ensemble Learning)理論做為依據,與傳統之單一分類演算法相比,集成策略具有更強的模型穩健性和泛化能力。論文中以BCI Competition III Dataset IVa與 BCI Competition IV Dataset IIa兩公開資料集進行演算法驗證,結果顯示其平均分類準確率分別可達 87.03%與80.18%,可有效提升與想像運動有關之腦電信號的分類性能 。
摘要(英) The brain-computer interface (BCI) creates a communication control path that does not rely on muscle movement to promote communication between the brain and external machines. It is observed by measuring the waveform issued from the electrocortical potential difference signal. Electroencephalography (EEG) signals are converted into control commands, thereby expanding the application of users′ thought and providing a new way of communication for people with normal thinking but incomplete motor functions. Motor imagery (MI) is a process of mental ideation of motor behavior without any actual motor performance. Recent research indicates that the brain nerve activation regions between imaginative movement and actual movement execution overlap each other, making it consistent with imaginary movement. Cause the development of the brain-computer interface to become a new research direction.
As stated above, this paper aims to develop an algorithm framework for the brain-computer interface applied to MI. The framework is based on the common spatial pattern for feature extraction and ensemble learning theory. Compared with the traditional single classification algorithm, the ensemble strategy has stronger model robustness and generalization ability. In this paper, two public data sets, BCI Competition III Dataset IVa and BCI Competition IV Dataset IIa, are used for algorithm verification. The results show that the average classification accuracy can reach 87.03% and 80.18%, respectively, which can effectively improve the EEG signals classification performance related to MI.
關鍵字(中) ★ 腦機介面
★ 腦電圖
★ 想像運動
★ 共同空間型樣法
★ 集成學習
★ 穩健性
關鍵字(英) ★ Brain-computer Interface (BCI)
★ Electroencephalography (EEG)
★ Motor Imagery (MI)
★ Common Spatial Pattern (CSP)
★ Ensemble Learning
★ Robustness
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧與探討 3
1-4 內容大綱 5
第二章 理論背景 6
2-1 腦機介面 6
2-2 腦電訊號 8
2-2-1 想像運動 8
2-2-2 想像運動之活動頻段 9
2-3 集成學習 11
2-3-1 簡介 11
2-3-2 Bagging 13
2-3-3 Boosting 13
2-3-4 Stacking 14
2-3-5 Blending 16
第三章 演算法原理與分析 18
3-1 系統架構概述 18
3-1-1 共同空間型樣法 20
3-1-2 支持向量機 25
3-2 SBCSP 27
3-2-1 特徵降維 27
3-2-2 費雪線性判別(FLD) 28
3-2-3 主要成分分析(PCA) 31
3-3 FBCSP 34
3-3-1 帶通濾波器組 34
3-3-2 基於互信息之特徵選擇方法(MIBIF) 35
3-4 Riemannian CSP 38
3-4-1 流形學習與黎曼空間 38
3-4-2 腦電訊號與黎曼幾何 39
3-4-3 黎曼幾何距離 41
3-4-4 黎曼指數/對數投影 43
3-4-5 黎曼均值 46
3-4-6 黎曼切線空間投影 48
3-5 主要權重投票集成(WMVE) 50
第四章 實驗結果與討論 54
4-1 實驗數據 54
4-1-1 BCI Competition III Dataset IVa 54
4-1-2 BCI Competition Ⅳ Dataset Ⅱa 55
4-2 特徵選擇方法之比較 58
4-3 集成學習方法之比較 69
4-4 基於共同空間型樣法之方法比較 75
4-5 WMVE演算法之權重結果分析 79
4-6 參考文獻方法之比較 81
第五章 結論與未來展望 86
參考文獻 87
參考文獻 [1] K. Fukunaga, “Introduction to statistical pattern recognition,” Academic Press, New York, 1972.
[2] Z. J. Kales, M. S. Lazar, and S. Z. Zhou, “Spatial patterns underlying population differences in the background EEG”, Brain Topography, vol. 2, no. 4, pp. 275-284, 1990.
[3] Z. J. Koles, “The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG,” Electroencephalography and clinical Neurophysiology, vol. 79, no. 6, pp. 440-447, 1991.
[4] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal spatial filters for single-trial EEG classification in a movement task,” Clinical Neurophysiology, vol. 110, no. 5, pp.787-798, 1999.
[5] Q. Novi, C. Guan, T. H. Dat, and P. Xue, “Sub-band common spatial pattern (SBCSP) for brain-computer interface”, 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 204-207, Kohala Coast, Hawaii, USA, 2007.
[6] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common spatial pattern (FBCSP) in brain-computer interface”, 2008 IEEE International Joint Conference on Neural Networks, pp. 2390-2397, Hong Kong, China, 2008.
[7] H. Lu, H. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos, “Regularized common spatial pattern with aggregation for EEG classification in small-sample setting”, IEEE Transactions on Biomedical Engineering, vol. 57, no. 12, pp. 2936-2946, 2010.
[8] J. H. Friedman, “Regularized discriminant analysis”, Journal of the American Statistical Association, vol. 84, no. 405, pp. 165- 175, 1989.
[9] B. V. Dasarathy, and B. V. Sheela, “A composite classifier system design: Concepts and methodology”, Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713, 1979.
[10] M. Kearns, “Thoughts on Hypothesis Boosting”, Unpublished manuscript (Machine Learning class project), 1988.
[11] L.K. Hansen, and P. Salamon, “Neural network ensembles”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
[12] R. E. Schapire, “The strength of weak learnability”, Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
[13] D. H. Wolpert, “Stacked generalization”, Neural networks, vol. 5, no. 2, pp. 241-259, 1992.
[14] L. Breiman, “Bagging predictors”, Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
[15] L. Breiman, “Random forests”, Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
[16] M. Mohammadpour, M. Ghorbanian, and S. Mozaffari, “Comparison of EEG signal features and ensemble learning methods for motor imagery classification”, 2016 Eighth International Conference on Information and Knowledge Technology (IKT), pp. 288-292, Hamedan, Iran, 2016.
[17] C. Ramos, R. G. Hernández, M. Vellasco, and P. Vellasco, “Ensemble of classifiers applied to motor imagery task classification for BCI applications”, 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2995-3002, Anchorage, AK, USA , 2017.
[18] J. J. Vidal, “Toward direct brain-computer communication”, Annual Review of Biophysics and Bioengineering, vol. 2, pp. 157-180, 1973.
[19] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain-computer interfaces for communication and control”, Clinical neurophysiology, vol. 113, no. 6, pp. 767-791, 2002.
[20] L. F. Nicolas-Alonso, and J. Gomez-Gil, “Brain computer interfaces, a review”, Sensors, vol. 12, no. 2, pp. 1211-1279, 2012.
[21] S. Makeig, C. Kothe, T. Mullen, N. Bigdely-Shamlo, Z. Zhang, and K. Kreutz-Delgado, “Evolving signal processing for brain-compute interfaces ”, Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1567-1584, 2012.
[22] M. A. Romero-Laiseca, D. Delisle-Rodriguez , V. Cardoso , and D. Gurve et al. , “A low-lost lower-limb brain-machine interface triggered by pedaling motor imagery for post-stroke patients rehabilitation”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 4, pp. 988-996, 2020.
[23] J. Long, Y. Li, H. Wang, T. Yu, J. Pan, and F. Li, “A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 5, pp. 720-729, 2012.
[24] R. Horie, R. Nawa, “A hands-on game by using a brain-computer interface”, 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1-5, Nagoya, Japan, 2017.
[25] M. Jeannerod, “The representing brain: neural correlates of motor intention and imagery”, Behavioral and Brain Sciences, vol. 17, no. 2, pp. 187-245, 1994.
[26] J. R. Quinlan, “Bagging, boosting, and C4.5”, AAAI′96: Proceedings of the thirteenth national conference on Artificial intelligence, vol. 1, pp. 725-730, United States, 1996.
[27] X. Hu, ”Using rough sets theory and database operations to construct a good ensemble of classifiers for data mining applications”, Proceedings 2001 IEEE International Conference on Data Mining, pp. 233-240, San Jose, CA, USA, 2001.
[28] G. Zenobi, and P. Cunningham, “Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error”, Machine Learning: ECML 2001, 12th European Conference on Machine Learning, vol. 2167, pp. 576-587, Freiburg, Germany, 2001.
[29] B. Clarke, “Comparing Bayes Model Averaging and Stacking When Model Approximation Error Cannot be Ignored”, Journal of Machine Learning Research, vol. 4, pp 683-712, 2003.
[30] H. Ramoser, J. Müller-Gerking, and G. Pfurtscheller, ”Optimal spatial filtering of single trial EEG during imagined hand movement”, IEEE Transactions on Rehabilitation Engineering, vol 8, no. 4, pp. 441-446, 2000.
[31] G. D. Johnson, and D. J. Krusienski, “Computational EEG analysis for brain-computer interfaces”, Computational EEG Analysis, pp. 193-214, Springer, Singapore, 2018.
[32] W. S. Noble, “What is a support vector machine?”, Nature Biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
[33] C. Cortes, and V. Vapnik, “Support-vector networks”, Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
[34] J. Khan, M. H. Bhatti, U. G. Khan, and R. Iqbal, “Multiclass EEG motor-imagery classification with sub-band common spatial patterns”, EURASIP Journal on Wireless Communications and Networking, vol. 1, no. 174, 2019.
[35] J. S. Kirar, and R. K. Agrawal, “Optimal spatio-spectral variable size subbands filter for motor imagery brain computer interface”, Procedia Computer Science, vol. 84, no. 3, pp. 14-21, 2016.
[36] M. Bentlemsan, ET. Zemouri, D. Bouchaffra, B. Yahya-Zoubir, and K. Ferroudji, “Random forest and filter bank common spatial patterns for EEG-based motor imagery classification”, 2014 Fifth International Conference on Intelligent Systems, Modelling and Simulation, pp. 235-238, Langkawi, Malaysia, 2014.
[37] S. Park, D. Lee, S. Lee, “Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 2, pp. 498-505, 2018.
[38] R. Battiti , “Using mutual information for selecting features in supervised neural net learning”, IEEE Transactions on Neural Networks, Vol 5, no. 4, pp. 537-550, 1994.
[39] C. H. Nguyen, and P. Artemiadis, ”EEG Feature descriptors and discriminant analysis under riemannian manifold perspective”, Neurocomputing, vol. 275, no. 174, pp. 1871-1883, 2018.
[40] Barachant, S. Bonnet, M.Congedo, and C. Jutten, “Multiclass brain–computer interface classification by Riemannian geometry”, IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920-928, 2012.
[41] R. Polikar, “Ensemble based systems in decision making”, IEEE Circuits and Systems Magazine, vol. 6, no. 3, pp. 21-45, 2006.
[42] Dogan, D. Birant, “A weighted majority voting ensemble approach for classification”, 2019 4th International Conference on Computer Science and Engineering (UBMK), no. 69, pp. 366-371, Samsun, Turkey, 2019.
[43] B. Blankertz, K. Müller, D. J. Krusienski, and G. Schalk et al., “The BCI competition III: Validating alternative approaches to actual BCI problems”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 153-159, 2006.
[44] C. C.J.M. d. Klerk, M. H. Johnson, and V. Southgate, “An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy”, Developmental Cognitive Neuroscience, vol. 15, no. c, pp. 1-10, 2015.
[45] Y. Park, and W. Chung, “Selective feature generation method based on time domain parameters and correlation coefficients for filter-bank-CSP BCI systems”, Sensors, vol. 19, no. 17, 2019.
[46] G. Pfurtscheller, R. Scherer, G. R. Muller-Putz and F. H. Lopes da Silva, “Short-lived brain state after cued motor imagery in naive subjects”, European Journal of Neuroscience, vol. 28, no.7, pp. 1419-1426, 2008.
[47] C. Brunner, R. Leeb, G. R. Muller-Putz, A. Schlogl, and G. Pfurtscheller, “BCI Competition 2008 – Graz data set A”, Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, pp. 136-142, 2008.
[48] Y. Zhang, J. Liu, J. Liu, and J. Sheng, “EEG recognition of motor imagery based on SVM ensemble”, 2018 5th International Conference on Systems and Informatics (ICSAI), pp. 866-870, Nanjing, China, 2018.
[49] L. F. Nicolas-Alonso, R. Corralejo, J. Gómez-Pilar, D. Álvarez, and R. Hornero, “Ensemble learning for classification of motor imagery tasks in multiclass brain computer interfaces”, 2014 6th Computer Science and Electronic Engineering Conference (CEEC), pp. 79-84, Colchester, UK, 2014.
[50] M. Rahimi, A. Zarei, E. Nazerfard, and M. H. Moradi, “Ensemble methods combination for motor imagery tasks in brain computer interface”, 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering (ICBME), pp. 336-340, Tehran, Iran, 2016.
指導教授 徐國鎧(Guo-Kai Syu) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明