博碩士論文 108521123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.12.120.159
姓名 宋浩萱(HAO-HSUAN SUNG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金屬通孔對於基板合成波導濾波交叉器隔離度的影響
(The effect of vias on isolation of the substrate integrated waveguide filtering crossover)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 本論文首先透過兩個三階帶通基板合成波導濾波器(Substrate integrated waveguide)通道交叉排列構成交叉器,通過將4個完全相同結構的雙模態共振腔的以及位於中間交疊處的TE_102和TE_201正交簡併模態方腔,並透過佈置於腔體中心的輸入和輸出端口以及耦合窗口,可以成功的實現預期頻寬的通帶傳輸以及出色的隔離度,並且藉由調整饋入線的長寬以及耦合窗口的大小,即可輕鬆控制交叉器的頻寬。緊接著透過將外圍四個雙模態共振腔,調整為TE_101模態與中間共振腔耦合,不僅可以擁有相同的頻寬以及同樣出色的隔離度,調整後的TE_101模態共振腔顯著縮小了電路面積,並且也提高了控制電路頻寬的靈活性。
改善隔離度的方法,在本文中是透過將金屬通孔放置在耦合窗口中心,以實現更好的隔離度,並且透過改變金屬通孔的直徑,可發現金屬通孔的直徑大小對於隔離度有相當程度的影響力,接著調整耦合窗口的寬度,以達到在相同的頻寬下做比較,可得出耦合窗口中心放置金屬通孔的電路相較於沒有放置金屬通孔的電路有著更好的隔離度。

在本論文中所設計的基板合成波導濾波交叉器,將有其電路設計原理、模擬結果與實作結果探討。
摘要(英) In this paper, two third-order substrates waveguide bandpass filter channels are arranged in a cross arrangement used to synthesize the crossover. By combining the four dual-mode resonant cavities which have same structure and the TE_102 and TE_201 orthogonal degenerate mode in the intersecting cavity. The passband transmission with expected bandwidth and excellent isolation can be realized by the input and output ports and the coupling window arranged in the center of the cavity. Adjusting the length and width of the feed line and the width of the coupling window, the bandwidth of the filtering crossover can be easily controlled. Furthermore replacing the four dual-mode resonant cavities to TE_101 mode and couple with the intersecting cavity. Not only can achive the same bandwidth and the same excellent isolation, the TE_101 mode cavity significantly reduces the circuit area, but also improve more flexibly controlled bandwidth.

In this article, the vias are placing in the center of the coupling windows in order to improve the isolation. It can be found that changing the diameter of the centered vias has a considerable influence on the isolation, and then it can also be found that the circuit with a centered vias has better isolation compare with a circuit without a centered vias under the same bandwidth, by adjusting the width of the coupling windows to achieve the same conditions.

The substrate integrated waveguide filtering crossover designed in this paper ,all the design principles, simulation and measure results of the circuits will be discussed.
關鍵字(中) ★ 基板合成波導濾波器
★ 交叉器
★ 金屬通孔
關鍵字(英) ★ substrate integrated waveguide filter
★ crossover
★ vias
論文目次 目錄
頁次
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 論文架構 4
第二章 基本理論 5
2-1 矩形金屬波導共振腔 5
2-2 基板合成波導 7
2-3 帶通濾波器的基本設計原理 11
第三章 基板合成波導濾波交叉器的分析與設計 21
3-1 交叉器基本設計原理 21
3-2 單一腔體交叉器分析 22
3-3 三階基板合成波導帶通濾波器的設計 26
3-4 三階基板合成波導濾波交叉器 36
3-5 小型化三階基板合成波導濾波交叉器參數萃取 38
3-6 小型化三階基板合成波導濾波交叉器 42
第四章 提升小型化基板合成波導濾波交叉器隔離度 45
4-1 中心金屬通孔對相鄰SIW腔體之間的影響 45
4-2 中心金屬通孔結構小型化三階基板合成波導濾波交叉器 47
4-3 不同直徑的中心金屬通孔對腔體之間耦合的影響 51
4-4 不同直徑的中心金屬通孔對隔離度的影響 54
4-5 直徑1.4mm中心金屬通孔小型化三階基板合成波導濾波交叉器 58
第五章 結論 61
參考文獻 62
參考文獻 [1] G. E. Ponchak and E. Tentzeris, “Development of finite ground coplanar(FGC) waveguide 90 degree crossover junctions with low coupling,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, pp. 1891–1894.
[2] T.-S. Horng, “A rigorous study of microstrip crossovers and their possible improvements,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 9, pp. 1802–1806, Sep. 1994.
[3] A. Abbosh, S. Ibrahim, and M. Karim, "Ultra-wideband crossover using microstrip-to-coplanar waveguide transitions," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 10, pp. 500-502, Oct. 2012.
[4] Y. Chen and S.-P. Yeo, “A symmetrical four-port microstrip coupler for crossover application,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 11, pp. 2434–2438, Nov. 2007.
[5] J.-J. Yao, C. Lee, and S.-P. Yeo, “Microstrip branch-line couplers for crossover application,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 87–92, Jan. 2011.
[6] W. Liu, Z. Zhang, Z. Feng, and M. Iskander, “A compact wideband microstrip crossover,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 5, pp. 254–256, May 2012.
[7] X.-Y. Zhang, Q.-Y. Guo, K.-X. Wang, B.-J. Hu, and H.-L. Zhang, “Compact filtering crossover using stub-loaded ring resonator,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 5, pp. 327–329, May 2014.
[8] H. Uchimura, T. Takenoshita and M. Fujii,“Development of a “Laminated waveguide””, IEEE Transactions on Microwave Theory and Techniques, vol.46, no.12, pp.2438-2443, Dec. 1998.
[9] D. Deslanded and K. Wu, “Integrated microstrip and rectangular waveguide in planer Form” IEEE Microwave and Wireless Component Letters, vol. 11, no. 2, pp. 68-70, Feb. 2001.
[10] H. Li, W. Hong, T.-J. Cui, K. Wu, Y.-L. Zhang and L. Yan, “Propagation characteristics of substrate integrated waveguide based on LTCC” IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp 2045-2048, Dec. 2003
[11] D. Deslandes and K. Wu, “Single-substrate integration techniques for planar circuits and waveguide filters”, IEEE Transactions on Microwave Theory and Techniques, Feb. 2003, pp. 593-596.
[12] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," Microwave and wireless components letters, IEEE, vol. 12, pp. 333-335, 2002.
[13] T. Djerafi and K. Wu, "60 GHz substrate integrated waveguide crossover structure," in Proc. 39th Eur. Microw. Conf., Rome, Italy, 2009, pp. 1014-1017.
[14] A. B. Guntupalli, T. Djerafi, and K.Wu, “Ultra-compact millimeter-wave substrate integrated waveguide crossover structure utilizing imultaneous electric and magnetic coupling,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
[15] S. Y. Zheng and X. F. Ye, “Ultra-compact wideband millimeter-wave crossover using slotted SIW structure,” in Proc. IEEE Int. Workshop Electromagn., Nanjing, China, May 2016, pp. 1–2.
[16] S.-Q. Han, K. Zhou, J.-D. Zhang, C.-X. Zhou and W. Wu, "Novel substrate integrated waveguide filtering crossover using orthogonal degenerate modes," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 9, pp. 803-805, Sep. 2017.
[17] Zhou, Y., K. Zhou, J. Zhang, C. Zhou, and W. Wu, “Miniaturized substrate integrated waveguide filtering crossover,” IEEE Electrical design of advanced packaging and systems symposium (EDAPS), 1–3, 2017.
[18] W.-L. Zhan, J.-X. Xu, X.-L. Zhao, B.-J. Hu, and X. Y. Zhang, ``Substrate integrated waveguide multi-channel filtering crossover with extended channel number and controllable frequencies,′′ IEEE Trans. Circuits Syst. II, Exp. Briefs, early access, Mar. 23, 2020.
[19] Y. Zhou, K. Zhou, J. Zhang, and W. Wu, “Substrate-integrated waveguide filtering crossovers with improved selectivity,” Int. J. RF Microw. Comput.-Aided Eng., vol. 30, no. 3, Mar. 2020.
[20] Zhou, K. & Wu, K. (2020). “Compact substrate-integrated waveguide filtering crossover by embedding CPW quarter-wavelength resonators”. Paper presented at the IEEE/MTT-S International Microwave Symposium (IMS 2020), Los Angeles, CA, USA (pp. 916-919).
[21] D. M. Pozar, Microwave Engineering, 4th. Wiley.
[22] F. Xu, and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 66–73, Jan. 2005.
[23] J.-S. Hong and M.-J. Lancaster, Microstrip Filters for RF/MicrowaveApplications. New York, NY, USA: Wiley, 2001, chs. 8–10.
[24] S. S. Hesari and J. Bornemann, “Substrate integrated waveguide crossover formed by orthogonal TE102 resonators,” in Proc. 47th Eur. Microw. Conf., Nuremberg, Germany, Oct. 2017, pp. 17–20.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明