博碩士論文 108521124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.147.47.15
姓名 謝長諺(Chang-Yan Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 帶狀有限二維量子點陣列的熱電性質
(Thermoelectric properties of finite two-dimensional quantum dot arrays with band-like electronic states)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 功率因數(PF=S^2 G_e)取決於塞貝克係數(S)和電子電導(G_e)。G_e的增強將不可避免地抑制S,因為它們密切相關,所以,PF的優化非常困難。在這裡,我們從理論上研究了帶有從電極注入的載子的二維量子點(QD)陣列的熱電特性,共振穿隧過程中的二維量子點陣列的Lorenz數滿足Wiedemann-Franz定律,此定律證實了微帶的形成。當微帶中心遠離電極的費米能階時,電子傳輸將在熱電子輔助穿隧過程(TATP)中進行,在這種情況下,帶狀情況下的G_e和原子狀情況下的S可以同時發生。我們透過本文證明,隨著電子態數量的增加,G_e的增強不會抑制TATP中的S。
摘要(英) The thermal power (PF=S^2 G_e) depends on the Seebeck coefficient (S) and electron conductance (G_e). The enhancement of G_e will unavoidably suppress S because they are closely related. As a consequence, the optimization of PF is extremely difficult. Here, we theoretically investigated the thermoelectric properties of two-dimensional quantum dot (QD) arrays with carriers injected from electrodes. The Lorenz number of 2D QD arrays in the resonant tunneling procedure satisfies the Wiedemann-Franz law, which confirms the formation of minibands. When the miniband center is far away from the Fermi level of the electrodes, the electron transport is in the thermionic-assisted tunneling procedure (TATP). In this regime, G_e in band-like situation and S in atom-like situation can happen simultaneously. We have demonstrated that the enhancement of G_e with an increasing number of electronic states will not suppress S in the TATP.
關鍵字(中) ★ 熱電材料
★ 二維
★ 量子點陣列
★ 熱電優質
關鍵字(英) ★ Thermoelectric material
★ two-dimensional
★ quantum dot arrays
★ ZT
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 IV
第一章、導論 1
1-1:前言 1
1-2:熱電效應(Thermoelectric effect) 2
(1)席貝克效應(Seebeck effect) 2
(2)帕爾帖效應(Peltier effect) 4
(3)熱電優值(Figure of merit) 5
1-3:文獻回顧 6
1-4:研究動機 7
第二章、系統模型與公式推導 8
2-1:一維量子點奈米線 8
2-2:二維量子點奈米線陣列 9
2-3系統電子總能 11
2-4格林函數分析與電子傳輸係數 12
第三章、熱電轉換特性模擬與分析 14
3-1二維量子點陣列之電子傳輸特性 14
3-2-1穿隧律對熱電特性的影響 16
3-2-2溫度變化對熱電特性的影響 18
3-3電子躍遷強度對熱電特性的影響 19
第四章、結論 23
參考文獻 24
參考文獻 [1] E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology", Electronics Conference (BEC) 2010 12th Biennial Baltic, Tallinn (2010).
[2] Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling", Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, "Semiconductor thermoelements and thermoelectric Cooling", Infosearch Limited London (1957).
[4] A. Majumdar, "Thermoelectricity in Semiconductor Nanostructures", Science 303, 777 (2004).
[5] H. J. Goldsmid and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration", Br. J. Appl. Phys. 5,386 (1954).
[6] H. J. Goldsmid, A. R. Sheard and D. A. Wright, "The performance of bismuth telluride thermojunctions", Br. J. Appl. Phys. 9,365 (1958).
[7] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor", Phys. Rev. B 47, 16631 (1993).
[8] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B 47, 12727 (1993).
[9] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B 53, R10493 (1996).
[10] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O′Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature 413,597 (2001).
[11] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G.Schmidt, Phys. Rev. B 84, 165415 (2011).
[12] M. Hu and D. Poulikakos, Nano. Lett. 12, 5487 (2012).
[13] X. Mu, Y. Wang, X Wang, P. Zhang, A. C. To, and T. F. Luo, Sci. Rep. 5, 16697(2015).
[14] C.R. Kagan, C.B. Murry, Nat. Nanotechnol. 10 (2015) 1013.
[15] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297 (2002) 2229.
[16] E. Talgorn, Y. Gao, M. Aerts1, L.T. Kunneman, J.M. Schins, T.J. Savenije, Marijn A. van Huis, Herre S.J. van der Zant, Arjan J. Houtepen, Laurens D.A. Siebbeles, Nat. Nanotechnol. 6 (2011) 733.
[17] G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mater. Rev. 48 (2003) 45.
[18] G.D. Mahan, L.M. Woods, Phys. Rev. Lett. 80 (1998) 4016.
[19] L.D. Lhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M. G. Kanatzidis, Nature 508 (2014) 373.
[20] C. Chang, M. Mu, D. He, Y. Pei, C.F. Wu, et al., Science 360 (2018) 778.
[21] D.D. Fan, H.J. Liu, L. Cheng, P.H. Jiang, J. Shi, X.F. Tang, Appl. Phys. Lett. 105 (2014) 133113.
[22] B. Su, V. J. Goldman, and J. E. Cunningham, Science, 255, 313 (1992).
[23] M. Field, C. G. Smith,M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D.G. Hasko, Phys. Rev. Lett. 70, 1311 (1993).
[24] V. Madhavan, W. Chen, T. Jamneala,M. F. Crommie, and N. S. Wingreen, 280, 567(1998).
[25] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, Science, 281, 540(1998).
[26] P. Murphy, S. Mukerjee, and J. Moore, Phys. Rev. B 78, 161406(R) (2008).
[27] D. M.-T. Kuo and Y. C. Chang, Phys. Rev. B 81, 205321 (2010).
[28] N. Nakpathomkun, H. Q. Xu, and H. Linke, Phys. Rev. B 82, 235428 (2010).
[29] O. Karlstrom,H. Linke, G. Karlstrom, and A. Wacker, Phys. Rev. B 84, 113415(2011).
[30] P. Trocha, and J. Barnas, Phys. Rev. B 85, 085408 (2012).
[31] D. M. T. Kuo and Y. C. Chang, J. Vacuum. Science and Technology, 31, 04D108(2013).
[32] G. Rossello, R. Lopez, and R. Sanchez, Phys. Rev. B 95,235404 (2017).
[33] H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Heidelberg, 1996.
[34] D.M.T. Kuo, C.C. Chen, Y.C. Chang, Phys. Rev. B 95 (2017), 075432.
[35] D.M.T. Kuo, AIP Adv. 10 (2020), 045222.
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明