博碩士論文 108522030 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:
姓名 林賦安(Fu-An Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於舌頭力量和表面肌電圖的吞嚥智能評估系統
(The Swallowing Intelligent Assessment System Based on Tongue Strength and Surface EMG)
★ 虛擬實境搭配腦電、心電以及呼吸器設備在心肺同步呼吸訓練對心跳變異與腦波之訓練應用系統與資料分析★ 利用分層共現網絡評估發展遲緩兒童的精細運動
★ 太極大師:基於太極拳的注意力訓練遊戲, 使用動作辨識及平衡分析進行表現評估★ 比較XRSPACE MANOVA中手勢和控制器互動模式的用戶體驗
★ 基於數據融合模型的機器學習 對甲基苯丙胺使用障礙的多生理訊號號分析★ 在有干擾的虛擬教室環境下 大人小孩的行為表現與腦神經反應的異同
★ 使用映射模型和跨資料集遷移式學習的輕量化居家衰弱症訓練系統★ 心率生理回饋放鬆訓練對於海洛因使用疾患(HUD)生理資訊之影響分析
★ 基於深度學習模型的3D心理旋轉對認知障礙的診斷與評估★ 評估注意力偵測之穿戴式腦電電極放置有效性
★ 設計透過立體互動的虛擬實境教學遊戲系統★ 3D影像及互動控制環境對心智旋轉訓練效果影響之分析與研究
★ 透過使用擷取和嵌入使用者的印象到虛擬空間的混合實境學習遊戲★ 以虛擬實境為基礎的上肢中風復健之分析與研究
★ 以虛擬實境為基礎的前庭暈眩復健系統和復健成效分析與研究★ 動作分析與互動回饋在下肢骨折的術後運用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 吞嚥困難是現代社會中非常重要的議題,常見於中風患者以及年長者。在許多研究中顯示,舌頭強度可以做為吞嚥功能的評估標準。本研究使用了舌壓力儀器作為評估舌頭強度的工具,並且使用表面肌電圖儀器收集喉部肌肉電數據,再將評估任務結合有趣的遊戲,提高使用者使用的意願以及刺激使用者有更好的表現。任務完成後系統會將舌壓數據以及肌肉電數據收集起來,我們透過Scoring Function的運算,量化出使用者的吞嚥動作表現品質。除了計算動作的品質分數之外,我們也從收集到的數據中提取出特徵,建立多種機器學習模型比較每個模型的分類成效,挑選出最佳的模型藉以正確的預測出使用者吞嚥功能的等級高低。透過這套評估系統,我們希望可以提供快速且準確的評估結果,使得在醫療方面,醫療人員在進行診斷以及復健訓練時,能有更加方便以及有效的工具。
摘要(英) Dysphagia is a very important issue in modern society, and it is common in stroke patients and the elderly. In many studies, it has been shown that tongue strength can be used as an evaluation criterion for swallowing function. In this study, a tongue pressure instrument was used as a tool to assess tongue strength, and a surface electromyography instrument was used to collect electrical data of larynx muscles, and then the assessment task was combined with interesting games to increase users′ willingness to use and stimulate users to have better performance. After the task is completed, the system collects tongue pressure data and muscle electrical data. We use the Scoring Function calculation to quantify the user′s swallowing performance quality. In addition to calculating the quality score of the motion, we also extract features from the collected data, build a variety of machine learning models to compare each model’s classification effectiveness and select the best model to correctly predict the level of the user′s swallowing function. Through this evaluation system, we hope to provide fast and accurate evaluation results, so that medical personnel can have more convenient and effective tools for diagnosis and rehabilitation training.
關鍵字(中) ★ 吞嚥困難
★ 舌頭力量
★ 表面肌電圖
關鍵字(英) ★ Dysphagia
★ Tongue strength
★ Surface Electromyography
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
1.1 Motivation and Proposed Goal 1
1.2 Swallowing Assessment 3
1.3 Innovation 5
1.4 Organization of Thesis 6
2. Related Works 7
2.1 Non-invasive Swallowing Assessment 7
2.2 Swallowing Function Assessment Method Based on Tongue Strength 8
2.3 Swallowing Function Assessment Method Based on Surface Electromyography 9
3. System Design 11
3.1 Task Module 12
3.2 Tongue Pressure Instrument Module 15
3.3 Surface Electromyography Instrument Module 16
3.4 Data Analysis Module 16
4. Experimental Method 17
4.1 Participant 17
4.2 Preparation 17
4.3 Task 19
4.4 Data Collection 22
4.5 Data Analysis 22
4.5.1 Scoring Function 24
4.5.2 Feature Extraction 27
4.5.3 Machine Learning 29
5. Results 30
6. Discussion 33
7. Conclusion and Future Work 35
Reference 36
參考文獻 [1] Vanderwegen J, Van Nuffelen G, De Bodt M, The validation and psychometric properties of the Dutch version of the swallowing quality-of-life questionnaire (SWAL-QoL), Dysphagia. 2013;28(1):11–23.
[2] Lee JH, Choi SY, Criteria to Assess Tongue Strength for Predicting Penetration and Aspiration in Patients With Stroke Having Dysphagia, Eur J Phys Rehabil Med 56(4), 2020 Aug, pp. 375-385.
[3] Dudik, J. M., Jestrovic, I., Luan, B., Coyle, J. L. & Sejdic, E, A comparative analysis of swallowing accelerometry and sounds during saliva swallows, Biomed Eng Online 14, 3, (2015).
[4] Yagi, N. et al, A noninvasive swallowing measurement system using a combination of respiratory flow, swallowing sound, and laryngeal motion, Medical & biological engineering & computing 55, 1001–1017 (2017).
[5] Nederkoorn, C., Smulders, F. T. & Jansen, A. Recording of swallowing events using electromyography as a non-invasive measurement of salivation, Appetite 33, 361–369, (1999).
[6] Kusuhara, T. et al, Impedance pharyngography to assess swallowing function, J Int Med Res 32, 608–616 (2004).
[7] Blyth, K. M., McCabe, P., Madill, C. & Ballard, K. J, Ultrasound in dysphagia rehabilitation: a novel approach following partial glossectomy, Disabil Rehabil 39, 2215–2227, (2017).
[8] Shieh WY, Wang CM, Cheng HK, Imbang TI, Noninvasive Measurement of Tongue Pressure and Its Correlation with Swallowing and Respiration, Sensors (Basel). 2021 Apr 7;21(8):2603.
[9] Lee, J., Chau, T. & Steele, C. M, Effects of age and stimulus on submental mechanomyography signals during swallowing, Dysphagia 24, 265–273, (2009).
[10] K. Inoue, M. Yoshioka, N. Yagi, S. Nagami, and Y. Oku, Using machine learning and a combination of respiratory flow, laryngeal motion, and swallowing sounds to classify safe and unsafe swallowing, IEEE Trans. Biomed. Eng., vol. 65, no. 11, pp. 2529–2541, Nov. 2018.
[11] Hashimoto, H., Hirata, M., Takahashi, K. et al, Non-invasive quantification of human swallowing using a simple motion tracking system, Sci Rep 8, 5095 (2018).
[12] Shieh W.-Y., Wang C.-M., Chang C.-S, Development of a portable non-invasive swallowing and respiration assessment device, Sensors. 2015;15:12428–12453.
[13] Wang C.-M., Shieh W.-Y., Weng Y.-H., Hsu Y.-H., Wu Y.-R, Non-invasive assessment determine the swallowing and respiration dysfunction in early Parkinson’s disease, Parkinsonism Relat. Disord. 2017;42:22–27.
[14] Li Q., Minagi Y., Ono T., Chen Y., Hori K., Fujiwara S., Maeda Y. The biomechanical coordination during oropharyngeal swallowing: An evaluation with a non-invasive sensing system, Sci. Rep. 2017;7:15165.
[15] Sana Smaoui ,Amy Langridge, Catriona M. Steele, The Effect of Lingual Resistance Training Interventions on Adult Swallow Function: A Systematic Review, Dysphagia 35, 2020, pp. 745-761.
[16] Park JS, Kim HJ, Oh DH, Effect of tongue strength training using the Iowa Oral Performance Instrument in stroke patients with dysphagia, J Phys Ther Sci. 2015 Dec;27(12):3631-4.
[17] Fukuoka T., Ono T., Hori K., Wada Y., Uchiyama Y., Kasama S., Yoshikawa H., Domen K. Tongue pressure measurement and videofluoroscopic study of swallowing in patients with Parkinson’s disease, Dysphagia. 2019;34:80–88.
[18] Poorjavad M., Talebian S., Ansari N.N., Soleymani Z, Surface Electromyographic Assessment of Swallowing Function, Iran. J. Med. Sci. 2017
[19] El Gharib AZG, Berretin-Felix G, Rossoni DF, Seiji Yamada S, Effectiveness of therapy on post-extubation dysphagia: clinical and electromyographic findings, Clin Med Insights Ear Nose Throat 2019
[20] Sakai K., Nakayama E., Rogus-Pulia N., Takehisa T., Takehisa Y., Urayama K.Y., Takahashi O, Submental Muscle Activity and Its Role in Diagnosing Sarcopenic Dysphagia, Clin Interv. Aging 15, 2020, pp. 1991-1999.
[21] Moon JH, Hong DG, Kim KH, Park YA, Hahm SC, Kim SJ, Won YS, Cho HY, Effects of lingual strength training on lingual strength and articulator function in stroke patients with dysarthria, J Phys Ther Sci. 2017 Jul;29(7):1201-1204.
[22] Namasivayam-MacDonald AM, Burnett L, Nagy A, Waito AA, Steele CM, Effects of Tongue Strength Training on Mealtime Function in Long-Term Care, Am J Speech Lang Pathol. 2017 Nov 8;26(4):1213-1224.
[23] Park JS, Lee SH, Jung SH, Choi JB, Jung YJ, Tongue strengthening exercise is effective in improving the oropharyngeal muscles associated with swallowing in community-dwelling older adults in South Korea: A randomized trial, Medicine (Baltimore). 2019 Oct;98(40):e17304.
[24] Park JS, Hwang NK, Kim HH, Choi JB, Chang MY, Jung YJ, Effects of lingual strength training on oropharyngeal muscles in South Korean adults, J Oral Rehabil. 2019 Nov;46(11):1036-1041.
[25] Yano J., Yamamoto-Shimizu S., Yokoyama T., Kumakura I., Hanayama K., Tsubahara A, Effects of tongue-strengthening exercise on the geniohyoid muscle in young healthy adults, Dysphagia. 2020;35:110–116.
[26] C. E. Stepp, D. Britton, C. Chang, A. L. Merati, and Y. Matsuoka, Feasibility of game-based electromyographic biofeedback for dysphagia rehabilitation, Proc. 5th Int. IEEE/EMBS Conf. Neural Eng., Apr. 2011, pp. 233–236.
[27] Sasaki, M., Onishi, K., Nakayama, A., Kamata, K., Stefanov, D. and Yamaguchi, M., Tongue motor training support system, Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014b), pp.3582-3585.
[28] Li, C.-M., Lee, H.-Y., Hsieh, S.-H., Wang, T.-G., Wang, H.-P., Chen, J.-J.J, Development of Innovative Feedback Device for Swallowing Therapy, (2016) Journal of Medical and Biological Engineering, 36 (3), pp. 357-368.
[29] Nicholls, B.; Ang, C. S.; Efstratiou, C.; Lee, Y.; Yeo, W.-H, Swallowing Detection for Game Control: Using Skin-Like Electronics to Support People with Dysphagia, 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, Kona, Hawaii, U.S.A., March 13–17, 2017.
[30] Molfenter SM, Brates D, Herzberg E, Noorani M, Lazarus C, The Swallowing Profile of Healthy Aging Adults: Comparing Noninvasive Swallow Tests to Videofluoroscopic Measures of Safety and Efficiency, J Speech Lang Hear Res 61(7), 2018,pp. 1603-1612.
[31] Pizzorni N, Ginocchio D, Bianchi F, Feroldi S, Vedrodyova M, Mora G, et al, Association Between Maximum Tongue Pressure and Swallowing Safety and Efficacy in Amyotrophic Lateral Sclerosis, Neurogastroenterol Motil, 2020.
[32] Ko, J.Y., Kim, H., Jang, J. et al, Electromyographic activation patterns during swallowing in older adults, Sci Rep 11, 5795 ,2021.
[33] Jeong D.M., Shin Y.J., Lee N.R., Lim H.K., Choung H.W., Pang K.M., Kim B.J., Kim S.M., Lee J.H, Maximal strength and endurance scores of the tongue, lip, and cheek in healthy, normal Koreans, J. Korean Assoc. Oral Maxillofac. Surg. 2017;43:221–228.
[34] Wu SJ, Wang CC, Lin FY, Tseng KY, Hwu YJ, Analysis of Labial and Lingual Strength among Healthy Chinese Adults in Taiwan, Int J Environ Res Public Health. 2020 Oct 28;17(21):7904.
[35] G. Huang, D. Zhang, X. Zheng, and X. Zhu, An EMG-based handwriting recognition through dynamic time warping, in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2010, pp. 4902–4905, 2010.
[36] N. Vaughan and B. Gabrys, Comparing and combining time seriestrajectories using dynamic time warping, Procedia Computer Science,2016.
[37] E. Saraee et al., ExerciseCheck: data analytics for a remote monitoring and evaluation platform for home-based physical therapy, in Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, 2019, pp. 110–118.
指導教授 葉士青(Shih-Ching Yeh) 審核日期 2021-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明