博碩士論文 108522086 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:
姓名 王振綱(Zhen-Gang Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 利用機器學習方法基於多類型地層監測資料預測濁水溪沖積扇地區之地層下陷
(Prediction of Land Subsidence in Choushui River Alluvial Fan Area Using Machine Learning Methods Based on Multiple Types of Ground Level Monitoring Data)
★ 基於質譜儀資料使用機器學習辨識克雷伯氏肺炎桿菌之多重抗藥性★ 結合多種訊號預處理方法於質譜儀資料以辨識細菌對抗生素之抗藥性
★ 利用機器學習預測濁水溪沖積扇區域之地下水位★ 使用表徵學習和機器學習方法於晶圓線切割機台之異常偵測
★ 基於質譜儀資料利用人工智慧方法辨識革蘭氏陰性菌對環丙沙星抗藥性之特徵峰值★ 應用數位分身於馬達軸承之異常偵測
★ 基於光誘導介電泳影像處理檢測流體抗藥性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 地層下陷在世界各地發生,已然造成許多的災害,濁水溪沖積扇亦深受其害,為了減緩地層下陷帶來的影響,預測地層下陷便成為重要任務;台灣先前地層下陷預測的研究主要著重在數值模擬模型,文獻上較少發現應用機器學習方法於地層下陷預測的研究,相比於數值模擬模式建立時須提供水文地質參數、補注量與抽水量資料,機器學習方法可直接對給定資料集建模;本研究欲建立濁水溪沖積扇地區建立地層下陷預測模型,先後探討輸入模型資料的時間尺度、特徵重要性、不同模型效能差異、特徵影響半徑,最後再建立空間解析度100 x 100 (單位公尺)的地層下陷預測模型;本研究使用機器學習方法的隨機森林(Random Forest)和長短期記憶(Long Short-Term Memory)神經網路,觀測井地下水位、雨量、溫度與濕度作為特徵,深層樁與Global Navigation Satellite System (GNSS) 為地層下陷資料,為使資料趨勢平穩,地下水位與地層下陷資料以一階差分計算變化量。實驗一與實驗二的結果顯示,透過兩種評估模型預測值與真實值偏離程度的指標,Root Mean Square Error (RMSE)最低可達4.27(單位mm),Mean Absolute Error (MAE)則是2.97(單位mm),亦即當隨機森林模型以90天為訓練時間尺度,30天為訓預測時間尺度時,模型的預測表現會最好,此結果可用於決定模型輸入的特徵與輸出的水文地質資料的維度,同時,根據實驗二之中的特徵重要性實驗,地下水位特徵為地層下陷問題裡最重要的特徵,而在地下水位特徵中,第二與第三含水層的重要性最高。
摘要(英) Land subsidence (LS) occurs all over the world and has brought many disasters to people. Choushui River alluvial fan is also suffered from it. Thus, in order to mitigate the impact of LS, prediction of LS becomes an important goal. Previously, researches of LS prediction in taiwan were mainly focused on numerical model, while machine learning method was seldom applied. In comparison with numerical model, machine learning method don′t necessarily need hydrogeological parameters when building model, it can be directly built with given dataset. This study aims to establish a LS prediction model of Choushui River alluvial fan area. We discussed the time scale of data fed into the model, importance of features, performance of different models, influence radius of feature, and establishment of a model with a spatial resolution of 100 x 100 (in meters). This study uses Random Forest (RF) and Long Short-Term Memory (LSTM) of machine learning method to build the model. Several hydrogeological data is regarded as feature. Deep leveling pile and Global Navigation Satellite System data as LS data. In order to stabilize the data trend, the groundwater level and LS data are processed by first-order difference. According to the results of experiment one and two, RF model has the best performance when training and prediction time scale are 90 and 30 days respectively, with two measurements which are used to calculate the deviation between predict and true value, the Root Mean Square Error (RMSE) can be as low as 4.27 (mm) and Mean Absolute Error (MAE) is 2.97 (mm). The time scale result can be used to determine the dimension of the input features and output LS result of the model. Besides, the feature importance experiment shows that the groundwater level is the most important feature. Among the groundwater level feature, the first confined and second confined aquifers are the most important.
關鍵字(中) ★ 地層下陷預測
★ 濁水溪沖積扇
★ 機器學習
★ 隨機森林
★ 長短期記憶
關鍵字(英) ★ Land subsidence prediction
★ Choushui River Alluvial Fan
★ Machine learning
★ Random Forest
★ Long Short-Term Memory
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 動機與目的 5
第二章 材料和方法 6
2-1 研究地區 6
2-2 資料介紹 7
2-3 資料前處理 8
2-3.1 資料清理 8
2-3.2 資料型式轉換 11
2-4 方法 14
2-5 實驗流程說明 16
第三章 結果 19
3-1 實驗一 時間尺度搜索 19
3-2 實驗二 特徵探討與模型比較 28
3-2.1 特徵重要性 28
3-2.2 不同模型預測能力比較 33
3-2.3 特徵影響半徑 46
3-3 實驗三 預測任意座標地層下陷 47
第四章 討論與結論 51
4-1 討論 51
4-2 結論與未來工作 60
參考文獻 61
附 錄 63
參考文獻 [1] Adler, R. F., G. Gu, M. Sapiano, J.-J. Wang and G. J. Huffman (2017). "Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014)." Surveys in Geophysics 38(4): 679-699.
[2] 楊偉甫 (2010). "台灣地區水資源利用現況與未來發展問題." 用水合理化與新生水水源開發論壇: 1-9.
[3] 台灣經濟部水利署. (2020). "108年台灣水文環境情勢專刊."
[4] 柳志錫, 廖志中 and 潘以文. (2004). "複雜含水地層之抽水沉陷行為." 博士, 國立交通大學.
[5] Holzer, T. L., D. L. Galloway, J. Ehlen, W. C. Haneberg and R. A. Larson (2005). "Impacts of land subsidence caused by withdrawal of underground fluids in the United States." Humans as Geologic Agents, Geological Society of America. 16: 0.
[6] Hung, W.-C., C. Hwang, J.-C. Liou, Y.-S. Lin and H.-L. Yang (2012). "Modeling aquifer-system compaction and predicting land subsidence in central Taiwan." Engineering Geology 147-148: 78-90.
[7] Shin Wei Lee, C. F. Y., Cheng Haw Lee, Hung I. Lin, Wen Jui Kung (2019). "An integration between HEC-RAS and MODFLOW to evaluate groundwater level and subsidence of aquifers on Choushui River Alluvial Fan." Taiwan Water Conservancy 67(1): 91-102.
[8] Cheng-Wei Lin, H.-H. H., Shih-Chun Hsiao, Chao-Lung Yeh, Jung-Ting Hsu (2016). "Land Subsidence Caused by Groundwater Exploitation in Yunlin, Taiwan." International Conference on Hydroscience & Engineering. Tainan, Taiwan.
[9] 丁崇峯, 黃煌輝 and 徐享崑 (2006). "機器學習演算法應用於地下水位與地層下陷量分析之研究." 博士, 國立成功大學.
[10] Rahmati, O., F. Falah, S. A. Naghibi, T. Biggs, M. Soltani, R. C. Deo, A. Cerdà, F. Mohammadi and D. Tien Bui (2019). "Land subsidence modelling using tree-based machine learning algorithms." Science of The Total Environment 672: 239-252.
[11] Li, H., L. Zhu, H. Gong, H. Sun and J. Yu (2020). "Land subsidence modelling using a long short-term memory algorithm based on time-series datasets." Proc. IAHS 382: 505-510.
[12] Hakim, W. L., A. R. Achmad and C.-W. Lee (2020). "Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data." Remote Sensing 12(21): 3627.
[13] Ilia, I., C. Loupasakis and P. Tsangaratos (2018). "Land subsidence phenomena investigated by spatiotemporal analysis of groundwater resources, remote sensing techniques, and random forest method: the case of Western Thessaly, Greece." Environmental Monitoring and Assessment 190(11): 623.
[14] 江崇榮, 賴典章, 賴慈華, 黃智昭, 費立沅, 侯進雄, 陳瑞娥, 陳利貞, 呂學諭, 周素卿, 鄂忠信, 黃明昌, 陸挽中, 張閔翔, 劉幸樺 and 李耀文 (1999). "濁水溪沖積扇水文地質調查研究總報告." 新北市中和區, 台灣經濟部中央地質調查所.
[15] 國立成功大學 (2016). "地層下陷自記式分層監測機制之研究." 台灣經濟部水利署.
[16] Fabian Pedregosa, and et al (2011). "Scikit-learn: Machine Learning in Python." Journal of Machine Learning Research 12: 2825-2830.
[17] Staudemeyer, R. and E. Morris (2019). "Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks."
[18] Arabameri, A., S. Saha, J. Roy, J. P. Tiefenbacher, A. Cerda, T. Biggs, B. Pradhan, P. T. Thi Ngo and A. L. Collins (2020). "A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility." Science of The Total Environment 726: 138595.
[19] Chen, B., H. Gong, Y. Chen, X. Li, C. Zhou, K. Lei, L. Zhu, L. Duan and X. Zhao (2020). "Land subsidence and its relation with groundwater aquifers in Beijing Plain of China." Science of The Total Environment 735: 139111.
[20] Dagum, E. (2013). "Time Series Modelling and Decomposition." Statistica 70.
[21] Philippe Esling, Carlos Agon (2012). "Time-series data mining." ACM Computing Surveys, Association for Computing Machinery, 45 (1), pp.12. 10.1145/2379776.2379788. hal-01577883
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明