博碩士論文 108621007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.145.166.7
姓名 莊秉學(Bing-Xue Zhuang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場
(A Novel Approach to Assimilate Polarimetric Parameters with an LETKF System: Analysis and Forecast in Real Summer Cases)
相關論文
★ McGill Algorithm for Precipitation nowcasting using Lagrangian Extrapolation(MAPLE)即時預報系統在臺灣複雜地形之可行性評估:颱風與梅雨鋒面個案分析★ 利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8 個案分析
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 藉由數值模式水平風場改善雷達回波外延即時預報系統:16個颱風個案統計分析
★ 分析不同微物理參數化之系集預報誤差: SoWMEX-IOP8 對流個案★ 利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008年西南氣流實驗IOP8期間颮線系統個案
★ 台灣地區對流胞特性統計分析與即時路徑預報之改善★ 評估TAHOPE觀測實驗同化S-PolKa徑向風、回波與折射指數對短期降雨預報的影響:觀測系統模擬實驗(OSSE)之測試
★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例★ 台灣地區強對流胞即時預報與冰雹預警能力之分析與改善
★ Extreme Heavy Rainfall Event on 01-02 June 2017 over Northern Taiwan Area: Analysis of Radar Observation and Ensemble Simulations★ WRF-LETKF系統同化反演熱動力場與雷達資料:鋒面雨帶個案之分析探討
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 同化雙偏極化雷達差異反射率之方法與影響評估:2021 年宜蘭降雨觀測實驗 IOP2 個案分析
★ 利用三維回波移動場改善即時降雨預報並建構系集即時預報系統:臺灣梅雨鋒面及秋季降水個案分析★ 從衛星觀測看西北太平洋熱帶氣旋快速增強的前兆
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用WRF-LETKF雷達同化系統(WRF-LETKF Radar Assimilation System, WLRAS)進行資料同化實驗,除了同化已被廣泛使用在雷達資料同化的徑向風(Vr)與回波(ZH),進一步同化雙偏極化參數,如差異反射率(ZDR)與比差異相位差(KDP)。另外,本研究設計了一種新的同化方法,利用平均粒徑與ZDR的高相關性從ZDR的觀測增量取得更多微物理變數的修正,當觀測資料被同化時更新由混合比以及總數量濃度診斷得到的標準化截距參數(Nw)以及質量權重平均粒徑(Dm)。同化實驗選用了兩種不同的中尺度系統以及四種不同的雲微物理參數化方案。其中一個系統是由西南風驅使的颮線系統,另外一個系統是局地產生的午後對流。四種不同的雲微物理參數化方案分別為GCE、WSM6、WDM6、MOR。本研究執行了一系列的實驗以評估同化雙偏極化參數對於分析場以及定量降水預報(Quantitative Precipitation Forecast, QPF)的影響。實驗結果顯示利用單矩量的雲微物理參數化方案同化額外的ZDR後,ZH與KDP的分析場反而會變得比較差。當使用雙矩量的雲微物理參數化方案同化ZDR與KDP時,兩者的誤差都能夠下降。此外,使用新方法同化雙偏極化參數可以明顯的改善ZDR的分析場,使ZDR的誤差下降更多。除了對雲微物理變數的修正之外,同化額外的雙偏極化參數亦能夠調整水氣分布以及加強對流區的垂直運動。在同化了雙偏極化參數之後,強降雨的表現有得到改善,即使在利用單矩量雲微物理參數化方案同化ZDR的實驗中也可以發現強降雨的機率變高。總結來說,利用單矩量雲微物理參數化方案同化額外雙偏極化參數存在著限制,而雙矩量雲微物理參數化方案有更多的彈性來調適雙偏極化參數對雲微物理變數造成的修正。此研究中證實新的方法能夠更有效的利用ZDR的觀測增量來降低ZDR的誤差。雲微物理變數的彈性調整以及同化雙偏極化參數對於動力與熱力場的調整有助於改善短時定量降水預報的表現。
摘要(英) This study applied WRF-LETKF Radar Assimilation System (WLRAS) to assimilate polarimetric parameters, i.e. differential reflectivity (ZDR) and specific differential phase (KDP), in addition to radial wind (Vr) and reflectivity (ZH) which is commonly used in radar data assimilation. Besides, a new approach is developed to make use of the high correlation between mean diameter and ZDR to extract more correction from ZDR innovation. It updates normalized intercept parameter (Nw) and mass-weighted mean diameter (Dm) diagnosed from original model variables, mixing ratio and total number concentration. Two real cases, including squall lines forced by synoptic southwestern wind and a local afternoon thunderstorm, are selected to conduct the assimilation experiments with four different microphysics parameterization (MP) schemes, GCE, WSM6, WDM6 and MOR. A series of experiments are conducted to evaluate the performance of the analysis and the quantitative precipitation forecast (QPF). The results show that assimilating additional ZDR with single moment schemes deteriorates the analysis field of ZH and KDP. Errors of ZDR and KDP can decrease simultaneously when all the polarimetric parameters are assimilated with double moment schemes. The new approach reduces more ZDR errors through the high correlation between Dm and ZDR. In addition to the correction in microphysical states, assimilating additional polarimetric parameters can adjust water vapor and enhance vertical velocity in the strong convective region. Heavy rainfall forecast performs better even in the experiments assimilating ZDR with single moment schemes. In conclusion, there is limitation in assimilating additional polarimetric parameters with single moment schemes, and double moment schemes have more flexibility to adapt the adjustment in hydrometeor variables from assimilating additional polarimetric parameters. It is confirmed that the new approach can extract more correction from ZDR innovation. The flexible correction in microphysical states and the adjustment in dynamical and thermodynamical fields help to improve the performance of short-term QPF.
關鍵字(中) ★ 雙偏極化參數
★ 系集卡爾曼濾波器
關鍵字(英) ★ Polarimetric Parameters
★ EnKF
論文目次 摘要..............................................i
Abstract.........................................ii
Acknowledgment..................................iii
Outline..........................................iv
List of Tables...................................vi
List of Figures.................................vii
Chapter 1 Introduction............................1
Chapter 2 Case Overview...........................5
2.1 2008/06/14 Squall Line........................5
2.2 2020/07/20 Afternoon Thunderstorm.............6
Chapter 3 Experiment Design.......................7
3.1 Model Configuration...........................7
3.2 Radar Data....................................8
3.3 Assimilation System...........................9
3.4 Observation Operator.........................11
3.5 New Approach to Assimilate Polarimetric Parameters.16
Chapter 4 Verification Methods...................19
4.1 Normalized Root Mean Square Error (NRMSE)....19
4.2 Contoured Frequency by Altitude Diagram (CFAD).20
4.3 Forecast Skill Scores........................20
Chapter 5 Results................................23
5.1 Performance of Single Moment Schemes.........23
5.2 Performance of Double Moment Schemes.........27
5.3 Performance of the New Approach..............31
5.4 Impact on Dynamics and Thermodynamics........35
5.5 Performance of Short-Term QPF................39
Chapter 6 Summary and Future Works...............44
References.......................................48
Tables...........................................53
Figures..........................................56
參考文獻 Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. Journal of Applied Meteorology, 41, 674-685.

Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. Journal of the Atmospheric Sciences, 73, 1015-1038.

Chang, W., K.-S. Chung, L. Fillion, and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Monthly Weather Review, 142, 2118-2138.

Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Monthly Weather Review, 137, 4115-4135.

Dawson, D. T., E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-Level ZDR Signatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail. Journal of the Atmospheric Sciences, 71, 276-299.

Dolan, B., B. Fuchs, S. A. Rutledge, E. A. Barnes, and E. J. Thompson, 2018: Primary Modes of Global Drop Size Distributions. Journal of the Atmospheric Sciences, 75, 1453-1476.

Ebert, E. E., 2001: Ability of a Poor Man′s Ensemble to Predict the Probability and Distribution of Precipitation. Monthly Weather Review, 129, 2461-2480.

Harlim, J., and B. R. Hunt, 2005: Local ensemble transform kalman filter: An efficient scheme for assimilating atmospheric data. Preprint.

Hong, S.-Y., J.-H. Kim, J.-o. Lim, and J. Dudhia, 2006: The WRF single moment microphysics scheme (WSM). Journal of the Korean Meteorological Society, 42, 129-151.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112-126.

Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part I: Observation Operators for Reflectivity and Polarimetric Variables. Monthly Weather Review, 136, 2228-2245.

Jung, Y., M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis. Monthly Weather Review, 136, 2246-2260.

Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme. Journal of Applied Meteorology and Climatology, 49, 146-163.

Kawabata, T., H.-S. Bauer, T. Schwitalla, V. Wulfmeyer, and A. Adachi, 2018: Evaluation of Forward Operators for Polarimetric Radars Aiming for Data Assimilation. Journal of the Meteorological Society of Japan, 96A, 157-174.

Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric Signatures in Supercell Thunderstorms. Journal of Applied Meteorology and Climatology, 47, 1940-1961.

Lee, M.-T., P.-L. Lin, W.-Y. Chang, B. K. Seela, and J. Janapati, 2019: Microphysical Characteristics and Types of Precipitation for Different Seasons over North Taiwan. Journal of the Meteorological Society of Japan, 97, 841-865.

Lei, H., J. Guo, D. Chen, and J. Yang, 2020: Systematic Bias in the Prediction of Warm-Rain Hydrometeors in the WDM6 Microphysics Scheme and Modifications. JGR Atmospherics, 125, e2019JD030756.

Li, X., and J. R. Mecikalski, 2010: Assimilation of the dual-polarization Doppler radar data for a convective storm with a warm-rain radar forward operator. JGR Atmospherics, 115.

Li, X., and J. R. Mecikalski, 2012: Impact of the Dual-Polarization Doppler Radar Data on Two Convective Storms with a Warm-Rain Radar Forward Operator. Monthly Weather Review, 140, 2147-2167.

Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 138, 1587-1612.

Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Applied Meteorology and Climatology, 22, 1065-1092.

Marshall, J. S., and W. M. K. Palmer, 1948: The Distribution of Raindrops with Size. Journal of Atmospheric Sciences, 5, 165-166.

Milbrandt, J. A., and M. K. Yau, 2005: A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter. Journal of the Atmospheric Sciences, 62, 3051-3064.

Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62, 1665-1677.

Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A, 56, 415-428.

Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Weather and Forecasting, 24, 730-748.

Parker, M. D., and R. H. Johnson, 2000: Organizational Modes of Midlatitude Mesoscale Convective Systems. Monthly Weather Review, 128, 3413-3436.

Putnam, B., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2019: Ensemble Kalman Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013 Oklahoma Tornadic Supercell Case. Monthly Weather Review, 147, 2511-2533.

Roebber, P. J., 2009: Visualizing Multiple Measures of Forecast Quality. Weather and Forecasting, 24, 601-608.

Rutledge, S. A., and P. Hobbs, 1983: The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. Journal of Atmospheric Sciences, 40, 1185-1206.

Ryzhkov, A., and D. Zrnić, 1996: Assessment of Rainfall Measurement That Uses Specific Differential Phase. Journal of Applied Meteorology and Climatology, 35, 2080-2090.

Ryzhkov, A., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric Radar Observation Operator for a Cloud Model with Spectral Microphysics. Journal of Applied Meteorology and Climatology, 50, 873-894.

Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter. Monthly Weather Review, 131, 1663-1677.

Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. Journal of Applied Meteorology and Climatology, 34, 1978-2007.

Sun, J., and N. A. Crook, 1997: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. Journal of the Atmospheric Sciences, 54, 1642-1661.

Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation Adjustment. Monthly Weather Review, 117, 231-235.

Tao, W. K., and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol Atmos Phys, 82, 97-137.

Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments. Tellus A, 66, 21804.

Tsai, C.-C., and K.-S. Chung, 2020: Sensitivities of Quantitative Precipitation Forecasts for Typhoon Soudelor (2015) near Landfall to Polarimetric Radar Data Assimilation. Remote Sensing, 12, 3711.

Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Applied Meteorology and Climatology, 22, 1764-1775.

Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and Microphysical Retrievals from Doppler Radar Observations of a Deep Convective Cloud. Journal of the Atmospheric Sciences, 57, 262-283.

Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. Journal of Applied Meteorology and Climatology, 44, 768-788.

You, C.-R., K.-S. Chung, and C.-C. Tsai, 2020: Evaluating the Performance of a Convection-Permitting Model by Using Dual-Polarimetric Radar Parameters: Case Study of SoWMEX IOP8. Remote Sensing, 12, 3004.

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter. Monthly Weather Review, 132, 1238-1253.

Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39, 830-841.

Zhu, K., M. Xue, K. Ouyang, and Y. Jung, 2020: Assimilating polarimetric radar data with an ensemble Kalman filter: OSSEs with a tornadic supercell storm simulated with a two-moment microphysics scheme. Royal Metorological Society, 146, 1880-1900.

邵彥銘,2015:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報:SoWMEX IOP8 個案分析,碩士論文,國立中央大學大氣物理研究所,95頁

梁晏彰,2019:分析不同微物理參數化之系集預報誤差: SoWMEX-IOP8 對流個案,碩士論文,國立中央大學大氣物理研究所,110頁

游承融,2019:利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008年西南氣流實驗IOP8期間颮線系統個案,碩士論文,國立中央大學大物理研究所,105頁

盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流實驗期間強降雨事件的雲物理過程,碩士論文,國立中央大學大物理研究所,105頁
指導教授 鍾高陞(Kao-Shen Chung) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明