參考文獻 |
底宗鴻,2008。 高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討。國立中山大學環境工程研究所碩士論文。
陳泰然、廖佩娟, 2011。臺灣地區冬季鋒面系統之天氣特徵研究,大氣科學,第三十九期第二號。
Adame, J.A., I. Gutierrez-Alvarez, J.P. Bolivar, M. Yela, 2020. Ground-based and OMI-TROPOMI NO2 measurements at El Arenosillo observatory: Unexpected upward trends, Environ. Poll., 264 (2020), doi: 10.1016/j.envpol.2020.114771.
Baldasano, J.M., 2020. COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain), Sci. Total Environ., 741 (2020), doi: 10.1016/j.scitotenv.2020.140353.
Bauwens, M., S. Compernolle, T. Stavrakou, J.-F. Müller, J. van Gent, H. Eskes, P. F. Levelt, R. van der A, J. P. Veefkind, J. Vlietinck, Huan Yu, C. Zehner, 2020. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations, Geophysical Research Letter, 47 (11), doi: 10.1029/2020GL087978.
Benedict, B. K., Y. Zhou, B. C. Sive, A. J. Prenni, Kristi A. Gebhart, E. V. Fischer, a. Evanoski-Cole, A. P. Sullivan, Sara Callahan1, B.A. Schichtel, H. Mao, Y. Zhou, and J L. Collett Jr., 2019. Volatile organic compounds and ozone in Rocky Mountain National Park during FRAPPÉ, Atmos. Chem. Phys, 19, 499–521, doi: 10.5194/acp-19-499-2019.
Biswal, A., V. Singh, S. Singh, A. P. Kesarkar, K.Ravindra, R. S. Sokhi, M. P. Chipperfiel, S. S. Dhomse, R. J. Pope, T.Singh, and S. Mor, 2021. COVID-19 lockdown-induced changes in NO2 levels across India observed by multi-satellite and surface observations, Atmos. Chem. Phys., 21, 5235–5251, doi: 10.5194/acp-21-5235-2021.
Bösch, T., V. Rozanov, A. Richter, E. Peters, A. Rozanov, F. Wittrock, A. Merlaud, J. Lampel, S. Schmitt, M. de Haij, S. Berkhout, B. Henzing, A. Apituley, M. den Hoed, J. Vonk, M. Tiefengraber, M. Müller, and J. P. Burrows, 2018. BOREAS – a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases, Atmos. Meas. Tech., 11, 6833–6859, doi: 10.5194/amt-11-6833-2018.
Cheng F.-Y. and C.-H. Hsu, 2019. Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan, Sci Rep, 9, 6636, doi: 10.1038/s41598-019-43104-x.
Choi, Y., Y. Kanaya, H. Takashima, H. Irie, K. Park and J. Chong, 2021. Long-Term Variation in the Tropospheric Nitrogen Dioxide Vertical Column Density over Korea and Japan from the MAX-DOAS Network, 2007–2017, Remote Sens., 13, 1937, doi:10.3390/rs13101937.
de Foy, B., Z. Lu, D. G. Streets, 2016. atellite NO2 retrievals suggest China has exceeded its NOx reduction goals from the twelfth Five-Year Plan, nature, 6, 35912, doi: 10.1038/srep35912.
Eskes, H., van Geffen, J., Boersma, F., Eichmann, K., Apituley, A., Pedergnana, M., Sneep, M., Veefkind Veekind, J., Loyola, D., 2019. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogen Dioxide.
Frieß, U., St. Beirle, L. A. Bonilla, T. Bösch, M. M. Friedrich, F. Hendrick, A. Piters, A. Richter, M. van Roozendael, V. V. Rozanov, E. Spinei, J.-L. Tirpitz, T. Vlemmix, T. Wagner, and Y. Wang, 2019. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: studies using synthetic data, Atmos. Meas. Tech., 12, 2155–2181, doi: 10.5194/amt-12-2155-2019.
Ghude, S. D., S. Fadnavis, G. Beig, S. D. Polade, and R. J. van der A, 2008. Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India, J. Geophys. Res, 113, D20305, doi:10.1029/2007JD009615.
Goldberg, D. L., S. C. Anenberg, G. H. Kerr, A. Mohegh, Z. Lu, D. G. Streets, 2021. TROPOMI NO2 in the United States: A Detailed Look at the Annual Averages, Weekly Cycles, Effects of Temperature, and Correlation with Surface NO2 Concentrations, Remote Sensing, 13, 10, doi: 10.3390/rs13112095.
Han, K. M., 2019. Temporal Analysis of OMI-Observed Tropospheric NO2 Columns over East Asia during 2006–2015, Atmos., 10, 658, doi:10.3390/atmos10110658.
Honninger, G., C. von Friedeburg and U. Platt, 2004. Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231–254, doi: 1680-7324/acp/2004-4-231
Kang, H., B. Zhu, R. J. van der, C. Zhu, G. de Leeuw, X. Hou, J. Gao, 2019. Natural and anthropogenic contributions to long-term variations of SO2, NO2, CO, and AOD over East China, Atmos, 215, 284-293, doi:10.1016/j.atmosres.2018.09.012.
Knepp, T., M. Pippin, J. Crawford, G. Chen, J. Szykman, R. Long, L. Cowen, A. Cede, N. Abuhassan, J. Herman, R. Delgado, J. Compton, T. Berkoff, J. Fishman, D. Martins, R. Stauffer, A. M. Thompson, A. Weinheimer, D. Knapp, D. Montzka, D. Lenschow, D. Neil, 2013. Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions, J. Atmos. Chem., 72, 261–286, doi: 10.1007/s10874-013-9257-6.
Kollonige, D. E, A. M. Thompson, M. Josipovic, M. Tzortziou, J. P. Beukes, R. Burger, D. K. Martins, P. G. van Zyl, V. Vakkari, L. Laakso, 2017. OMI Satellite and Ground-Based Pandora Observations and Their Application to Surface NO2 Estimations at Terrestrial and Marine Sites, J. Geophys. Res., 123(2), 1441–1459, doi:10.1002/2017JD026518.
Kramer, J. Louisa, Roland J. Leigh, John J. Remedios, and Paul S. Monks, 2008. Comparison of OMI and ground-based in situ and MAX-DOASmeasurements of tropospheric nitrogen dioxide in an urban area, J. Geophys. Res., 113, D16S39, doi: 10.1029/2007JD009168.
Lamsal, L. N., R. V. Martin, A. van Donkelaar, M. Steinbacher, E. A. Celarier, E. Bucsela, E. J. Dunlea, and J. P. Pinto, 2008. Ground-level nitrogen dioxide concentrations inferred fromthe satellite-borne Ozone Monitoring Instrument, J. Geophys. Res., 113, D16308, doi:10.1029/2007JD009235.
Larkin A., J. A. Geddes, R. V Martin, Q. Xiao, Y. Liu, J. D Marshall, M. Brauer, and P. Hystad, 2017. A Global Land Use Regression Model for Nitrogen Dioxide Air Pollution, Environ. Sci. Technol., 51 (12), 6957−6964, doi: 10.1021/acs.est.7b01148.
Lee, C.-S., K.-H. Chang, H. Kim, 2019. Long-term (2005–2015) trends analysis of OMI retrieved NO2 columns in Taiwan. Atmos. Poll. Res., 10(3) 960–970, doi:10.1016/j.apr.2019.01.004.
Lee, Y.Y., Y.Y. Hsieh, G.P. Chang-Chien, W. Wang, 2019. Characterization of the Air Quality Index in Southwestern Taiwan, Aerosol Air Qual. Res., 19, 749–785, doi: 10.4209/aaqr.2019.02.0080.
Lin, C. A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld and Charles C.-K. Chou, 2019. Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015, Remote Sens., 11(15), 1738, doi: 10.3390/rs11151738.
Ma, T., F. Duan, K. He, Y. Qin, D. Tong, G. Geng, X. Liu, H. Li, S. Yang, S. Ye, B. Xu, Q. Zhang, Y. Ma, 2019. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016, J. Elsevier, 83, 8-20, doi: 10.1016/j.jes.2019.02.031.
Meng, Z.Y., G.A. Ding, X.B. Xu, X.D. Xu, H.Q. Yu, S.F. Wang, 2008. Vertical distributions of SO2 and NO2 in the lower atmosphere in Beijing urban areas, China, J. Elsevier, 390 (2008), 456-465, doi:10.1016/j.scitotenv.2007.10.012.
Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality, Sci. Total Environ., 726(2020). doi: 10.1016/j.scitotenv.2020.138605.
Ordo´n˜ez, C., Richter, Steinbacher, Zellweger, Nu¨ß, P. Burrows, and A. S. H. Pre´voˆt, 2006. Comparison of 7 years of satellite-borne and ground-basedtropospheric NO2measurements around Milan, Italy, J. Geophys. Res., 111, D05310, doi:10.1029/2005JD006305.
Paraschiv, S., D.-E. Constantin, S.-L. Paraschiv and M. Voiculescu, 2017. OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014, Int. J. Environ. Res. Public Health, 14, 1415, doi:10.3390/ijerph14111415.
Platt, U., 1994. Differential Optical Absorption Spectroscopy (DOAS), Air Monitoring by Spectroscopic Techniques, M. Siegri, Ed., Chemical Analysis Series, Vol. 127, John Wiley and Sons, 27–84.
Platt, U., J., Stutz, 2008. Differential Optical Absorption Spectroscopy: Principles And Applications, Springer-Verlag, Berlin, Heidelberg, doi:10.1007/978-3-540-75776-4.
Richter, A., J. P. Burrows, H. Nu¨ß, C. Granier, and Ulrike Niemeier, 2005. Increase in tropospheric nitrogen dioxide over China observed from space, Nature, doi:10.1038/nature04092.
Ronald J. van de, B. Mijling, J. Ding, M. E. Koukouli, F. Liu, Q. Li, H. Mao, and N. Theys, 2017. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China, Atmos. Chem. Phys., 17, 1775–1789, doi:10.5194/acp-17-1775-2017.
Tian, X., P. Xie, J. Xu, A. Li, Y. Wang, M. Qin, Z. Hu, 2018. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China, J. Elsevier, 10, 1001-0742, doi:10.1016/j.jes.2018.03.006.
Tzortziou, M., O. Parker, B. Lamb, J. R. Herman, L. Lamsal, R. Stauffer, and N. Abuhassan, 2018. Atmospheric Trace Gas (NO2 and O3) Variability in South Korean Coastal Waters, and Implications for Remote Sensing of Coastal Ocean Color Dynamics, Remote Sens., 10, 1587; doi:10.3390/rs10101587.
USEPA., 2012. Our Nation’s Air Status and Trends Through 2010; Technical Report EPA-454/R-12-001; USEPA:Washington, DC, USA.
van Geffen, J. H. G. M., Eskes, H. J., Boersma, K. F., Maasakkers, J. D., and Veefkind, J. P., 2020. TROPOMI ATBD of the total and tropospheric NO2 data products, Report S5P-KNMI-L2-0005-RP, version 2.1.0, KNMI, De Bilt, the Netherlands, available at: http://www.tropomi.eu/documents/atbd/
van Geffen, J., K. F. Boersmal, H. Eskes, M. Sneep, M. ter Linden, M. Zara, and J. P. Veefkind, 2019. S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, doi.org/10.5194/amt-13-1315-2020.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, doi:10.1016/j.rse.2011.09.027, 2012.
Veefkind, J. P., K. F. Boersma, J. Wang, T. P. Kurosu, N. Krotkov, K. Chance, and P. F. Levelt, 2011. Global satellite analysis of the relation between aerosols and short-lived trace gases, Atmos. Chem. Phys., 11, 1255–1267, doi:10.5194/acp-11-1255-2011.
Venter, Z. S., K. Aunan, S. Chowdhury, and J. Lelieveld, 2020. COVID-19 lockdowns cause global air pollution declines, medRxiv, 117(32), 18984-18990, doi: 10.1073/pnas.2006853117.
Verhoelst, T., S. Compernolle, G. Pinardi, J.-C. Lambert, H. J. Eskes, K.-U. Eichmann,A. M. Fjæraa, J. Granville, S. Niemeijer, A. Cede, M. Tiefengraber, F. Hendrick, A. Pazmiño, A. Bais, A. Bazureau, K. F. Boersma, K. Bognar, A. Dehn, S. Donner, A. Elokhov, M. Gebetsberger, F. Goutail, M. G. de la Mora, A. Gruzdev, M. Gratsea, G. H. Hansen, H. Irie, N. Jepsen, Y. Kanaya, D. Karagkiozidis, R. Kivi, K. Kreher, P. F. Levelt, C. Liu, M. Müller, M. N. Comas, A. J. M. Piters, J.-P. Pommereau, T. Portafaix, C. Prados-Roman, O. Puentedura, R. Querel, J. Remmers, A. Richter, J. Rimmer, C. R. Cárdenas, L. S. de Miguel, V. P. Sinyakov, W. Stremme, K. Strong, M. Van Roozendael, J. P. Veefkind, T. Wagner, F. Wittrock, M. Y. González, C. Zehner, 2021. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, doi: 10.5194/amt-14-481-2021.
Wang, S.W., Q. Zhang, D. G. Streets, K. B. He, R. V. Martin, L. N. Lamsal, D. Chen, Y. Lei, and Z. Lu, 2012. Growth in NOx emissions from power plants in China: bottom-up stimates and satellite observations, Atmos. Chem. Phys., 12, 4429–4447, doi:10.5194/acp-12-4429-2012.
Xu, J.-W., R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin, 2015. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument, Atmos. Chem. Phys., 15, 13133–13144, doi:10.5194/acp-15-13133-2015.
Xue,Y. f., S. Zhang, Z. Zhou, K. Wang, K. Liu, X. Wang, A. Shi, K. Xu and H. Tian, 2019. Spatio-Temporal Variations of Multiple Primary Air Pollutants Emissions in Beijing of China, 2006–2015, Atmos., 10, 494, doi:10.3390/atmos10090494.
Yu C., T. Zhao, Y. Bai, L. Zhang, S. Kong, X. Yu, J. He, C. Cui, J. Yang, Y. You, G. Ma, M. Wu, and J. Chang, 2020. Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China, Atmos. Chem. Phys., 20, 7217–7230, doi: 10.5194/acp-20-7217-2020.
Zhang, R., G. Wang, S. Guo, M. L. Zamora, Q. Ying, Y. Lin, W. Wang, M. Hu and Y. Wang, 2015. Formation of urban fine particulate matter. Chem. Rev., 115(10), 3803-3855, doi: 10.1021/acs.chemrev.5b00067.
Zhang, Yanda, Y.-J. Cai, F. Yu, G. Luo, C. C.K. Chou, 2020. Seasonal Variations and Long-term Trend of Mineral Dust Aerosols over the Taiwan Region, Aerosol Air Qual. Res., 21, 200433, doi:10.4209/aaqr.2020.07.0433.
Zheng, C., C. Zhao, Y. Lib, X. Wu, K. Zhang, J. Gao, Q. Qiao, Y. Ren, X. Zhang, F. Chai, 2018. Spatial and temporal distribution of NO2 and SO2 in Inner Mongolia urban agglomeration obtained from satellite remote sensing and ground observations, J. Elsevier, 188, 50-59, doi: 10.1016/j.atmosenv.2018.06.029. |