博碩士論文 108622011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:13.58.82.79
姓名 林辰叡(Chen-Ray Lin)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 1906年臺灣梅山地震之動態斷層破裂模擬:單段與多段破裂之比較
(Revisiting the 1906 M 7.1 Meishan, Taiwan, Earthquake: A dynamic rupture modeling perspective on single-fault versus multi-fault)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 西元1906年M 7.1梅山地震為台灣史上一重大災害性地震,其造成數千的人員傷亡及房屋毀損。由於缺乏地震觀測,近100年來對於此地震的相關研究與調查相當稀少。本研究的主要目的是重新審視此地震震源並評估1906年梅山地震的動力學參數。透過根據摩擦極限、斷層幾何、流體壓力、岩石強度、流變、靜摩擦係數和應力降等物理和數學約束之應力與摩擦行為條件約束過程,本研究建立了192個實驗模型。在線性滑移弱化模型和均質半空間中,以3D有限元素法進行運算。透過對破裂模型的比較,討論歷史地震之動力學參數的可能範圍。選擇最合理的破裂模型後,結合1906年梅山地震的餘震分佈,比較模擬與觀測波形的P波初動與振幅和震度圖。當靜摩擦係數在0.4至0.5間時,斷層的成功破裂暗指此研究區域不適用拜耳萊定律。模型的平均應力降而在數十至數百個巴,其數值與台灣相同規模的地震應力降相似。液體超壓會使得岩石強度變弱,造成破裂面積與滑移之增加。根據破裂過程、波形和震度圖之比較,以多段模型擬合之結果最佳。本研究從動力學角度來看,破裂不是單獨發生在梅山斷層上,而是由逆衝構造觸發梅山斷層的破裂。此研究的分析結果,呈現梅山地震與尚未被廣泛考慮的逆衝構造之關聯性,更符合台灣西部的其他重大事件,如1999年的集集地震。
摘要(英) The March 17, 1906 (UTC) M 7.1 Meishan earthquake is one of the most devastating events in Taiwan’s history. The investigation in the past 100 years on this large event is rather limited due to the lack of seismic observation. However, with the advent of numerical simulations, dynamic rupture modeling provides an additional technique to understand source properties and the rupture process of the Meishan earthquake.
In this study, the primary target is to revisit the source and assess the dynamic parameters for the 1906 Meishan earthquake. Based on physical and mathematical constraints from frictional limit, fault geometries, fluid pressure, rock strength, empirical flow law, static friction coefficient, and stress drop, I build up 192 models for the experiment. The models are run in the linear slip-weakening model and on a 3D finite element mesh in a homogeneous half-space. By comparison of the resulting rupture conditions from the suite of ruptured models, I discuss the possible ranges of dynamic parameters for the historical earthquake. Following the selection of the most reasonable models, I compare the polarities and amplitudes of the synthetic waveforms to the waveforms observed on Omori seismographs in addition to the intensity maps in conjunction with the distribution of the aftershocks of the 1906 Meishan earthquake.
Resulting rupture processes show that the static friction coefficient ranges from 0.4 to 0.5, implying that Byerlee’s law does not hold for the region. Average stress drops in our models are in the range of few to few tens of MPa, and is in range of stress drops of similarly sized earthquakes in Taiwan. Fluid overpressurization weakens the rock matrices, and therefore, during rupture expands area and increases slip. According to the rupture process, waveform comparison, and seismic intensity simulation, the results provide considerably well-fit polarities and amplitudes from waveforms and similar intensity patterns with historical intensity maps for multiple-segment models. This study indicates that rupture occurred on multiple faults connected to the Meishan fault rather than on the Meishan fault alone. The results in this study suggest that the Meishan earthquake with its thrust fault association is closer in its faulting characteristics to other major events in western Taiwan, such as the 1999 Chi-Chi earthquake, due to this not yet widely considered thrust component.
關鍵字(中) ★ 1906梅山地震
★ 動力學模擬
★ 多段破裂
★ 斷層摩擦之行為
★ 物理應力參數
關鍵字(英) ★ 1906 Meishan Earthquake
★ Dynamic modeling
★ Multiple-segment rupture
★ Frictional behavior
★ Physical stress constraints
論文目次 1 Introduction 1
1.1 Motivation and purpose 1
1.2 1906 Meishan earthquake 1
1.3 Earthquake dynamic parameters 2
1.4 Scope of this thesis 7
2 Methods 9
2.1 Dynamic rupture modeling 9
2.2 Numerical approach 9
2.3 Mesh 11
2.4 Computational resources 12
2.5 Waveform simulation 12
2.6 Intensity simulation 12
3 Models and parameters 15
3.1 Possible fault models 15
3.2 Features of the stress-constraint procedure 15
3.2.1 Coordinate transformation of stresses 18
3.2.2 Fault-orientation parameters and the slip parameter 18
3.2.3 Consideration on the fluid pressure 19
3.2.4 Consideration on rock strength of lithosphere 20
3.2.5 Consideration on the flow law 20
3.2.6 Consideration on the static friction coefficient 21
3.2.7 Critically stressed crust 21
3.3 Model parameters from stress-constraint procedure 23
3.3.1 Resolving stress on faults 24
3.3.2 Stress drop and dynamic friction coefficient 32
3.3.3 Stress polygon 34
3.4 Experimental design 34
4 Results 41
4.1 Model evaluation 41
4.1.1 Stress drop 41
4.1.2 Static friction coefficient 41
4.1.3 Stress-condition model 42
4.1.4 Average slip and seismic magnitude 42
4.2 Waveform comparison and intensity map 43
4.2.1 Waveform comparison 43
4.2.2 Intensity map 44
4.3 Model evaluation on slip-weakening distance 44
5 Discussion 71
5.1 Uncertainty from the limited data for dynamic parameters 71
5.1.1 Static friction coefficient 71
5.1.2 Rock strength and flow law 71
5.1.3 Stress drop 71
5.1.4 Brittle-ductile transition 72
5.2 Non-rupture on the Chiayi frontal structure 72
5.3 Synthetic waveforms and intensity 72
5.4 Suggestion and future work 73
6 Conclusion 75
7 References 77
8 Appendix 83
8.1 Table of the model evaluation 83
8.2 Stress-constraint procedure (Python function) 89
8.3 Model establishment (Trelis code) 90
8.4 Calculation on FaultMod 97
參考文獻 Aagaard, B. T., Anderson, G., &Hudnut, K. W. (2004). Dynamic Rupture Modeling of the Transition from Thrust to Strike-Slip Motion in the 2002 Denali Fault Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S190–S201. https://doi.org/10.1785/0120040614
Abercrombie, R. E. (2021). Resolution and uncertainties in estimates of earthquake stress drop and energy release. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2196), 20200131. https://doi.org/10.1098/rsta.2020.0131
Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
Ando, R., &Kaneko, Y. (2018). Dynamic Rupture Simulation Reproduces Spontaneous Multifault Rupture and Arrest During the 2016 Mw 7.9 Kaikoura Earthquake. Geophysical Research Letters, 45(23), 12,875-12,883. https://doi.org/10.1029/2018GL080550
Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687. https://doi.org/10.1029/JB081i032p05679
Aochi, H., Ulrich, T., Ducellier, A., Dupros, F., &Michea, D. (2013). Finite difference simulations of seismic wave propagation for understanding earthquake physics and predicting ground motions: Advances and challenges. Journal of Physics: Conference Series, 454(012010), 1–9. https://doi.org/10.1088/1742-6596/454/1/012010
Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophysical Journal International, 178(2), 845–859. https://doi.org/10.1111/j.1365-246X.2009.04190.x
Barton, N. (1976). The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), 255–279. https://doi.org/10.1016/0148-9062(76)90003-6
Barton, Nick. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, 5(4), 249–261. https://doi.org/10.1016/j.jrmge.2013.05.008
Biete, C., Brown, D., Lund, B., Alvarez-Marron, J., Wu, Y.-M., Kuo-Chen, H., &Ho, C.-W. (2019). The influence of inherited continental margin structures on the stress and strain fields of the south-central Taiwan fold-and-thrust belt. Geophysical Journal International, 219(1), 430–448. https://doi.org/10.1093/gji/ggz296
Bott, M. H. P. (1959). The Mechanics of Oblique Slip Faulting. Geological Magazine, 96(2), 109–117. https://doi.org/10.1017/S0016756800059987
Brown, D., Alvarez-Marron, J., Biete, C., Kuo-Chen, H., Camanni, G., &Ho, C.-W. (2017). How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt. Tectonics, 36(7), 1275–1294. https://doi.org/10.1002/2017TC004475
Brown, L., Wang, K., &Sun, T. (2015). Static stress drop in the Mw 9 Tohoku-oki earthquake: Heterogeneous distribution and low average value. Geophysical Research Letters, 42(24), 10595–10600. https://doi.org/10.1002/2015GL066361
Byerlee, J. (1978). Friction of Rocks. In Rock Friction and Earthquake Prediction (Vol. 6, pp. 615–626). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7182-2_4
Carpenter, B. M., Saffer, D. M., &Marone, C. (2015). Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. Journal of Geophysical Research: Solid Earth, 120(7), 5273–5289. https://doi.org/10.1002/2015JB011963
Chen, S. K., Wu, Y.-M., Hsu, Y.-J., &Chan, Y.-C. (2017). Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion. Geophysical Journal International, 210(1), 228–239. https://doi.org/10.1093/gji/ggx165
Cheng, C.-T., Chiou, S.-J., Lee, C.-T., &Tsai, Y.-B. (2007). Study on probabilistic seismic hazard maps of Taiwan after Chi-Chi earthquake. Journal of GeoEngineering, 2(1), 19–28. https://doi.org/10.6310/jog.2007.2(1).3
Cheng, S.-N., Cheng, Z.-S., Wu, C.-F., &Yeh, Y.-T. (1997). The Compilation and Analysis of Earthquake Data in Taiwan, 1898-1945. Central Weather Bureau Technical Report, 677–689.
Dalguer, L. A., Wu, H., Matsumoto, Y., Irikura, K., Takahama, T., &Tonagi, M. (2020). Development of Dynamic Asperity Models to Predict Surface Fault Displacement Caused by Earthquakes. Pure and Applied Geophysics, 177(5), 1983–2006. https://doi.org/10.1007/s00024-019-02255-8
Dreger, D. S., Oglesby, D. D., Harris, R., Ratchkovski, N., &Hansen, R. (2004). Kinematic and dynamic rupture models of the November 3, 2002 Mw7.9 Denali, Alaska, earthquake. Geophysical Research Letters, 31(4), L04605. https://doi.org/10.1029/2003GL018333
Fagereng, Å., &Beall, A. (2021). Is complex fault zone behaviour a reflection of rheological heterogeneity? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2193), 20190421. https://doi.org/10.1098/rsta.2019.0421
Griffith, A. A. (1921). VI. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582–593), 163–198. https://doi.org/10.1098/rsta.1921.0006
Guatteri, M., Mai, P. M., &Beroza, G. C. (2004). A Pseudo-Dynamic Approximation to Dynamic Rupture Models for Strong Ground Motion Prediction. Bulletin of the Seismological Society of America, 94(6), 2051–2063. https://doi.org/10.1785/0120040037
Hanks, T. C. (1977). Earthquake stress drops, ambient tectonic stresses and stresses that drive plate motions. Pure and Applied Geophysics PAGEOPH, 115(1–2), 441–458. https://doi.org/10.1007/BF01637120
Hanks, T. C., &Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348. https://doi.org/10.1029/JB084iB05p02348
Hardebeck, J. L., &Aron, A. (2009). Earthquake Stress Drops and Inferred Fault Strength on the Hayward Fault, East San Francisco Bay, California. Bulletin of the Seismological Society of America, 99(3), 1801–1814. https://doi.org/10.1785/0120080242
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., &WSM Team. (2016). World Stress Map Database Release 2016. In GFZ Data Services. https://doi.org/10.5880/WSM.2016.001
Hirth, G., Teyssier, C., &Dunlap, J. W. (2001). An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90, 77–87. https://doi.org/10.1007/s005310000152
Hsieh, H.-H., Chen, C.-H., Lin, P.-Y., &Yen, H.-Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26–33. https://doi.org/10.1016/j.jseaes.2014.04.007
Hsu, M.-T. (1979). Seismology. Li Ming Cultural Enterprise Co.,Ltd. https://books.google.com.tw/books?id=y5%5C_LGwAACAAJ
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., &Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191. https://doi.org/10.1016/j.epsl.2014.02.026
Hung, J.-H., Ma, K.-F., Wang, C.-Y., Ito, H., Lin, W., &Yeh, E.-C. (2009). Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics, 466(3–4), 307–321. https://doi.org/10.1016/j.tecto.2007.11.014
Ida, Y. (1972). Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805. https://doi.org/10.1029/JB077i020p03796
Ikari, M. J., Marone, C., &Saffer, D. M. (2011). On the relation between fault strength and frictional stability. Geology, 39(1), 83–86. https://doi.org/10.1130/G31416.1
Kanamori, H., &Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.
Kanamori, H., &Heaton, T. H. (2000). Microscopic and macroscopic physics of earthquakes. Geophysical Monograph Series, 120, 147–163. https://doi.org/10.1029/GM120p0147
Kanamori, H., Lee, W. H. K., &Ma, K.-F. (2012). The 1909 Taipei earthquake-implication for seismic hazard in Taipei. Geophysical Journal International, 191(1), 126–146. https://doi.org/10.1111/j.1365-246X.2012.05589.x
Kaneko, Y., Fukuyama, E., &Hamling, I. J. (2017). Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw 7.8 Kaikōura earthquake. Geophysical Research Letters, 44(10), 4765–4773. https://doi.org/10.1002/2017GL073681
Kidder, S., Avouac, J., &Chan, Y. (2012). Constraints from rocks in the Taiwan orogen on crustal stress levels and rheology. Journal of Geophysical Research: Solid Earth, 117(B09408), 1–13. https://doi.org/10.1029/2012JB009303
Lay, T., &Wallace, T. (1995). Modern Global Seismology. https://www.elsevier.com/books/modern-global-seismology/lay/978-0-12-732870-6
Lee, C. T. (1999). Neotectonics and active faults in Taiwan. Proceedings of the 1999 Workshop on Disaster Prevention/Management and Green Techonolgy, Foster City, California, 61–74.
Liao, Y., Ma, K., Hsieh, M., Cheng, S., Kuo‐Chen, H., &Chang, C. (2018). Resolving the 1906 Mw 7.1 Meishan, Taiwan, Earthquake from Historical Seismic Records. Seismological Research Letters, 89(4), 1385–1396. https://doi.org/10.1785/0220170285
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., &Huang, C.-Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1–2), 28–42. https://doi.org/10.1016/j.tecto.2008.11.004
Lin, C.-W., Chang, H.-C., Lu, S.-T., &Shih, T.-S. (2000). An Introduction To The Active Faults Of Taiwan[With Explanatory Text Of The Active Fault Map Of Taiwan, Scale 1:500,000. Special Publication of the Central Geological Survey, 13, 122.
Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., Tsai, C.-H., Shin, T.-C., &Huang, M.-H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan. Journal of Geophysical Research, 115(B07404), 1–22. https://doi.org/10.1029/2009JB006417
Lisle, R. J. (2013). A critical look at the Wallace-Bott hypothesis in fault-slip analysis. Bulletin de La Société Géologique de France, 184(4–5), 299–306. https://doi.org/10.2113/gssgfbull.184.4-5.299
Liu, C.-M., Song, S.-R., &Kuo, C.-H. (2015). Silica Geothermometry Applications in the Taiwan Orogenic Belt. Terrestrial, Atmospheric and Oceanic Sciences, 26(4), 387. https://doi.org/10.3319/TAO.2015.02.09.01(TT)
Ma, K.-F., Brodsky, E. E., Mori, J., Ji, C., Song, T.-R. A., &Kanamori, H. (2003). Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw7.6). Geophysical Research Letters, 30(5), 1–4. https://doi.org/10.1029/2002GL015380
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., &Wu, H.-Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473–476. https://doi.org/10.1038/nature05253
Ma, S., Custódio, S., Archuleta, R. J., &Liu, P. (2008). Dynamic modeling of the 2004 M w 6.0 Parkfield, California, earthquake. Journal of Geophysical Research, 113(B2), B02301. https://doi.org/10.1029/2007JB005216
Mikumo, T., Olsen, K. B., Fukuyama, E., &Yagi, Y. (2003). Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults. Bulletin of the Seismological Society of America, 93(1), 264–282. https://doi.org/10.1785/0120020082
Miyake, H., Iwata, T., &Irikura, K. (2003). Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. Bulletin of the Seismological Society of America, 93(6), 2531–2545. https://doi.org/10.1785/0120020183
Newmark, N. M. (1959). A Method of Computation for Structural Dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94. https://doi.org/10.1061/JMCEA3.0000098
Niemeijer, A. R., &Spiers, C. J. (2007). A microphysical model for strong velocity weakening in phyllosilicate-bearing fault gouges. Journal of Geophysical Research, 112(B10), B10405. https://doi.org/10.1029/2007JB005008
Oglesby, D. D., &Day, S. M. (2001a). The effect of fault geometry on the 1999 Chi-Chi (Taiwan) Earthquake. Geophysical Research Letters, 28(9), 1831–1834. https://doi.org/10.1029/2000GL012043
Oglesby, D. D., &Day, S. M. (2001b). Fault Geometry and the Dynamics of the 1999 Chi-Chi (Taiwan) Earthquake. Bulletin of the Seismological Society of America, 91(5), 1099–1111. https://doi.org/10.1785/0120000714
Omori, F. (1907). Preliminary Note on the Formosa Earthquake of March 17, 1906. Bulletin of the Imperial Earthquake Investigation Committee, 1(2), 53–69.
Paterson, M. S., &Luan, F. C. (1990). Quartzite rheology under geological conditions. Geological Society, London, Special Publications, 54, 299–307. https://doi.org/10.1144/GSL.SP.1990.054.01.26
Peyrat, S., &Olsen, K. B. (2004). Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake. Geophysical Research Letters, 31(5), L05604. https://doi.org/10.1029/2003GL019058
Peyrat, Sophie, Olsen, K., &Madariaga, R. (2001). Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 106(B11), 26467–26482. https://doi.org/10.1029/2001JB000205
Satoh, T., &Okazaki, A. (2016). Relation Between Stress Drops and Depths of Strong Motion Generation Areas Based on Previous Broadband Source Models for Crustal Earthquakes in Japan. In Earthquakes, Tsunamis and Nuclear Risks (pp. 77–85). Springer Japan. https://doi.org/10.1007/978-4-431-55822-4_6
Shyu, J. B. H., Chuang, Y.-R., Chen, Y.-L., Lee, Y.-R., &Cheng, C.-T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 311–323. https://doi.org/10.3319/TAO.2015.11.27.02(TEM)
Shyu, J. B. H., Sieh, K., Chen, Y.-G., &Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research, 110(B08402), 1–33. https://doi.org/10.1029/2004JB003251
Sibson, R. H. (1974). Frictional constraints on thrust, wrench and normal faults. Nature, 249, 542–544. https://doi.org/10.1038/249542a0
Sinotech Engineering Consultants Inc. (1985). Report on regional geological study of Peikang Basement High area and the Meishan Fault. Taisse Site Feasibility Study.
Stipp, M., &Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21), 1–5. https://doi.org/10.1029/2003GL018444
Stüwe, K. (2007). Geodynamics of the lithosphere: an introduction. Springer Science & Business Media.
Suppe, J. (2007). Absolute fault and crustal strength from wedge tapers. Geology, 35(12), 1127–1130. https://doi.org/10.1130/G24053A.1
Suppe, J. (2014). Fluid overpressures and strength of the sedimentary upper crust. Journal of Structural Geology, 69(PB), 481–492. https://doi.org/10.1016/j.jsg.2014.07.009
Taihoku Meteorological Observatory (TMO). (1936). Report of the the Severe Hsinchu-Taichung Earthquake of April 21, 1935.
Taiwan Governor-General Office of Civil Affairs. (1907). Report of Earthquake Damages of Chiayi.
Trugman, D. T., &Shearer, P. M. (2017). Application of an improved spectral decomposition method to examine earthquake source scaling in Southern California. Journal of Geophysical Research: Solid Earth, 122(4), 2890–2910. https://doi.org/10.1002/2017JB013971
Tsai, Y.-B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125(1–3), 17–37. https://doi.org/10.1016/0040-1951(86)90005-3
Ulrich, T., Gabriel, A.-A., Ampuero, J.-P., &Xu, W. (2019). Dynamic viability of the 2016 Mw 7.8 Kaikōura earthquake cascade on weak crustal faults. Nature Communications, 10, 1213. https://doi.org/10.1038/s41467-019-09125-w
Wallace, R. E. (1951). Geometry of Shearing Stress and Relation to Faulting. The Journal of Geology, 59(2), 118–130. https://doi.org/10.1086/625831
Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J., &Cheng, C.-T. (2016). Probabilistic Seismic Hazard Assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325–340. https://doi.org/10.3319/TAO.2016.05.03.01(TEM)
Wollherr, S., Gabriel, A., &Mai, P. M. (2019). Landers 1992 “Reloaded”: Integrative Dynamic Earthquake Rupture Modeling. Journal of Geophysical Research: Solid Earth, 124(7), 6666–6702. https://doi.org/10.1029/2018JB016355
Wu, Y.-M., Teng, T., Shin, T.-C., &Hsiao, N.-C. (2003). Relationship between Peak Ground Acceleration, Peak Ground Velocity, and Intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386–396. https://doi.org/10.1785/0120020097
Yamashita, T. (1976). On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. I. Rupture propagation. Journal of Physics of the Earth, 24(4), 417–444. https://doi.org/10.4294/jpe1952.24.417
Yang, K.-M., Rau, R.-J., Chang, H.-Y., Hsieh, C.-Y., Ting, H.-H., Huang, S.-T., Wu, J.-C., &Tang, Y.-J. (2016). The role of basement-involved normal faults in the recent tectonics of western Taiwan. Geological Magazine, 153(5–6), 1166–1191. https://doi.org/10.1017/S0016756816000637
Yeh, Y.-T., Hsu, M.-T., &Cheng, S.-N. (1998). Report of the Rearrangement and Analysis of Ten Disastrous Earthquakes Occurring inTaiwan from 1898 to 1997 (Chinese). Central Weather Bureau Technical Report, 201–212.
Yen, Y.-T., &Ma, K.-F. (2011). Source-Scaling Relationship for M 4.6-8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481. https://doi.org/10.1785/0120100046
Yue, L.-F. (2007). Active structural growth in central Taiwan in relationship to large earthquakes and pore-fluid pressures. Princeton University.
Yue, L.-F., &Suppe, J. (2014). Regional pore-fluid pressures in the active western Taiwan thrust belt: A test of the classic Hubbert-Rubey fault-weakening hypothesis. Journal of Structural Geology, 69(PB), 493–518. https://doi.org/10.1016/j.jsg.2014.08.002
Zang, A., &Stephansson, O. (2010). Stress Field of the Earth’s Crust. In Stress Field of the Earth’s Crust. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8444-7
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., &Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7–8), 1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001
指導教授 卓穆蓼 馬國鳳 林彥宇(Sebastian von Specht Kuo-Fong Ma Yen-Yu Lin) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明