參考文獻 |
Abboud, R., Popa, R., Souza-Egipsy, V., Giometti, C. S., Tollaksen, S., Mosher, J. J., Findlay, R. H., & Nealson, K. H. (2005). Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol, 71(2), 811-816. https://doi.org/10.1128/AEM.71.2.811-816.2005
Alagappan, G., & Cowan, R. M. (2004). Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 54(8), 1255-1265. https://doi.org/10.1016/j.chemosphere.2003.09.013
Andersen, T. B., & Austrheim, H. (2006). Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters, 242(1-2), 58-72.
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proc Natl Acad Sci U S A, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115
Boulton, C., Yao, L., Faulkner, D. R., Townend, J., Toy, V. G., Sutherland, R., Ma, S., & Shimamoto, T. (2017). High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Pseudotachylytes and earthquake source mechanics. International geophysics, 94, 87-133.
Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2), 2601-2618.
Ehrlich, H. L. (1999). Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal, 16(2), 135-153.
Gough, H. L., & Stahl, D. A. (2003). Optimization of direct cell counting in sediment. Journal of microbiological methods, 52(1), 39-46.
Hazael, R., Foglia, F., Kardzhaliyska, L., Daniel, I., Meersman, F., & McMillan, P. (2014). Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range. Front Microbiol, 5, 612. https://doi.org/10.3389/fmicb.2014.00612
Hazael, R., Meersman, F., Ono, F., & McMillan, P. F. (2016). Pressure as a Limiting Factor for Life. Life (Basel), 6(3). https://doi.org/10.3390/life6030034
Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1), 1-20.
Heuer, V. B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A. J., Viehweger, B., Treude, T., Beulig, F., Schubotz, F., Tonai, S., Bowden, S. A., Cramm, M., Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., Kaneko, M., Lagostina, L., Manners, H., McClelland, H.-L., Metcalfe, K., Okutsu, N., Pan, D., Raudsepp, M. J., Sauvage, J., Tsang, M.-Y., Wang, D. T., Whitaker, E., Yamamoto, Y., Yang, K., Maeda, L., Adhikari, R. R., Glombitza, C., Hamada, Y., Kallmeyer, J., Wendt, J., Wörmer, L., Yamada, Y., Kinoshita, M., & Hinrichs, K.-U. (2020). Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 370(6521), 1230-1234. https://doi.org/10.1126/science.abd7934
Jaeger, J. (1971). Friction of rocks and stability of rock slopes. Geotechnique, 21(2), 97-134.
Kallmeyer, J. (2011). Detection and quantification of microbial cells in subsurface sediments. Adv Appl Microbiol, 76, 79-103. https://doi.org/10.1016/B978-0-12-387048-3.00003-9
Kepner Jr, R. L., & Pratt, J. R. (1994). Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological reviews, 58(4), 603-615.
Kim, H., Kaown, D., Kim, J., Park, I.-W., Joun, W.-T., & Lee, K.-K. (2020). Impact of earthquake on the communities of bacteria and archaea in groundwater ecosystems. Journal of Hydrology, 583. https://doi.org/10.1016/j.jhydrol.2020.124563
Kirchman, D., Sigda, J., Kapuscinski, R., & Mitchell, R. (1982). Statistical analysis of the direct count method for enumerating bacteria. Applied and Environmental Microbiology, 44(2), 376-382.
Kuo, L.-W., Wu, W.-J., Kuo, C.-W., Smith, S. A. F., Lin, W.-T., Wu, W.-H., & Huang, Y.-H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 150. https://doi.org/10.1016/j.jsg.2021.104419
Kuo, L. W., Song, S. R., Yeh, E. C., & Chen, H. F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18).
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., & Soh, W. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473-476.
Ma, S., Shimamoto, T., Yao, L., Togo, T., & Kitajima, H. (2014). A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 27(5), 469-497. https://doi.org/10.1007/s11589-014-0097-5
Macdonald, A. (2021). Adaptation to High Pressure in the Laboratory. In Life at High Pressure (pp. 327-352). Springer.
Morimura, S., Zeng, X., Noboru, N., & Hosono, T. (2020). Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. Journal of Hydrology, 581, 124341.
Morono, Y., Terada, T., Kallmeyer, J., & Inagaki, F. (2013). An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol, 15(10), 2841-2849. https://doi.org/10.1111/1462-2920.12153
Munna, M. S., Zeba, Z., & Noor, R. (2015). Influence of temperature on the growth of Pseudomonas putida. Stamford journal of microbiology, 5(1), 9-12.
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36. https://doi.org/10.1016/j.jsg.2012.02.018
Niemeijer, A., Fagereng, Å., Ikari, M., Nielsen, S., & Willingshofer, E. (2020). Faulting in the laboratory. In Understanding Faults (pp. 167-220). Elsevier.
Okeke, O. (2010). Influence of pressure gradients and fracturing in oil field rocks on hydrocarbon accumulation and exploration: a review. Global Journal of Geological Sciences, 8(1).
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1-26.
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge university press.
Shimamoto, T. (1994). A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Jour. Tectonic Res. Group of Japan, 39, 65-78.
Si, J., Li, H., Kuo, L., Pei, J., Song, S., & Wang, H. (2014). Clay mineral anomalies in the Yingxiu–Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9). Tectonophysics, 619, 171-178.
Suzuki, K., Shibuya, T., Yoshizaki, M., & Hirose, T. (2015). Experimental Hydrogen Production in Hydrothermal and Fault Systems: Significance for Habitability of Subseafloor H2 Chemoautotroph Microbial Ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems (pp. 87-94). https://doi.org/10.1007/978-4-431-54865-2_8
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, 105(31), 10949-10954.
Tanner, D., & Brandes, C. (2019). Understanding Faults: Detecting, Dating, and Modeling. Elsevier.
Ujiie, K., Tsutsumi, A., & Kameda, J. (2011). Reproduction of thermal pressurization and fluidization of clay-rich fault gouges by high-velocity friction experiments and implications for seismic slip in natural faults. Geological Society, London, Special Publications, 359(1), 267-285.
Umar, S. S., Salam, H. I. A., Bello, R. Y., & Hill, D. J. (2018). Effect of Temperature and benzoate concentration (s) upon the growth of P. Putida and P. aeruginosa using agar and broth of Tryptone Soya and Basal Salt as growth media (s). International Journal of Advanced Academic Research, 4(9).
Vanlint, D., Mitchell, R., Bailey, E., Meersman, F., McMillan, P. F., Michiels, C. W., & Aertsen, A. (2011). Rapid acquisition of Gigapascal-high-pressure resistance by Escherichia coli. mBio, 2(1), e00130-00110. https://doi.org/10.1128/mBio.00130-10
Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875-879.
余威論. (2009). 「速度-位移相關摩擦係數與巨型山崩運動特性」. 國立中央大學應用地質所,碩士論文. |