博碩士論文 108623002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:132 、訪客IP:18.119.106.226
姓名 蔡惠心(Hui-Hsin Tsai)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 PEARL立方衛星姿態辨識與控制次系統之設計與模擬
(Design and Simulation of Attitude Determination and Control Subsystem for PEARL CubeSat)
相關論文
★ 動態視星等之星象辨識演算法★ 太空電漿探針系統
★ 太空離子探測系統★ 微衛星離子探測系統
★ 電子溫度儀在太空電漿模擬艙之量測★ 先進電離層探測儀之機構設計與分析
★ 先進電離層探測儀離子流向推導與校正★ 探空火箭姿態計
★ 先進電離層探測儀地面電子測試設備★ 熱真空測試系統
★ 太空電漿模擬艙自動化監控系統★ 數位式探空火箭姿態量測模組
★ 先進電離層探測儀整合測試系統★ 先進電離層探測儀數位控制單元之研製
★ 探空十號火箭的姿態重建與分析★ 先進電離層雙生儀地面電子測試設備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文在於設計及模擬PEARL立方衛星的姿態辨識與控制次系統(ADCS),PEARL立方衛星是一枚通訊衛星,任務目的為驗證衛星與地面站能以Ka-band通訊,以及科學酬載小型電離層探測儀(CIP)量測影響通訊的電漿密度不規則體,在衛星不同模式中ADCS要能作姿態控制達到指向需求以達成任務。根據衛星需求設計次系統、控制模式與控制流程。使用MATLAB/Simulink以Software in the loop的方式模擬ADCS,建立真實太空中的環境、擾動、軌道、衛星運動學模型用來進行不同運作模式中的控制演算法與模擬。如Detumbling控制、Sun-Pointing控制、LVLH控制、Target-Pointing控制,模擬結果成功達到指向需求穩定衛星。
摘要(英) This thesis is mainly about the design and simulation of Attitude Determination and Control Subsystem (ADCS) for Propagation Experiment using kurz-Above-band Radio in Low earth orbit (PEARL) CubeSat. PEARL CubeSat is a communication satellite with the objective of verifying the communication of the ground station and the CubeSat using Ka-band transceiver, measuring the plasma irregularities of the Earth’s ionosphere that affects the communication systems. ADCS shall be able to control the attitude of PEARL in different operational mode in order to reach the pointing requirements and accomplishing the mission. Designs of the control mode and control process are in terms of the requirements. The ADCS is modeled as a software in the loop with MATLAB/Simulink. A scenario of the real space with environments, disturbances, spacecraft dynamics, sensors, actuators models are created to design the control algorithms and simulations of different control mode. Such as Detumbling control, Sun-Pointing control, LVLH control, Target-Pointing control. The simulation results reach the pointing requirements and stabilize the CubeSat successfully.
關鍵字(中) ★ 立方衛星
★ 姿態辨識與控制
關鍵字(英) ★ CubeSat
★ Attitude Determination and Control
★ ADCS
★ Simulink
★ PEARL
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
一、 緒論 1
1.1 PEARL立方衛星 1
1.2 PEARL任務目的 2
1.3 PEARL立方衛星次系統 4
1.4 研究方法 8
1.5 論文架構 8
二、 PEARL-2立方衛星姿態辨識與控制次系統 9
2.1 ADCS需求(Mission Requirements) 9
2.2 運作模式 10
2.2.1 鳳凰模式(Phoenix Mode) 11
2.2.2 安全模式(Safe Mode) 11
2.2.3 充電模式(Charge Mode) 12
2.2.4 科學模式(Science Mode) 12
2.2.5 通訊模式(Telemetry, Tracking & Control) 13
2.3 硬體元件 13
2.3.1 感測器(Sensors) 14
2.3.1.1 磁力計(Magnetometer) 14
2.3.1.2 陀螺儀(Gyroscope) 14
2.3.1.3 太陽感測器(Sun Sensor) 14
2.3.1.4 星象儀(Star Tracker) 15
2.3.1.5 GNSS接收機 15
2.3.2 致動器(Actuators) 16
2.3.2.1 磁力棒(Magnetorquer) 16
2.3.2.2 反應輪(Reaction Wheel) 17
2.3.3 ADCS硬體元件使用數量 19
三、 座標、軌道與運動模型 20
3.1 參考座標系 20
3.1.1 ECI座標 20
3.1.2 ECEF座標 21
3.1.3 LVLH座標 21
3.1.4 衛星體座標 22
3.1.5 目標參考座標 23
3.2 姿態表示 24
3.2.1 尤拉角(Euler Angles) 24
3.2.2 四元數(Quaternions) 24
3.2.3 姿態表示轉換 25
3.3 軌道 26
3.3.1 克卜勒軌道元素(Kepler Elements) 26
3.3.2 太陽同步軌道 27
3.4 衛星運動模型 28
3.4.1 衛星動力學(Dynamics) 29
3.4.2 衛星運動學(Kinematics) 30
四、 環境模型 32
4.1 軌道推算器 32
4.2 兩行軌道要素形式TLEs 32
4.3 地球磁場模型 34
4.4 日側/夜側模型 37
4.5 環境擾動模型 39
4.5.1 重力梯度力矩(Gravity-Gradient Torque) 40
4.5.2 太陽輻射壓力矩(Solar Radiation Pressure Torque) 40
4.5.3 大氣擾動力矩(Aerodynamic drag Toque) 43
4.5.4 殘磁擾動力矩(Magnetic Residual Torque) 45
4.5.5 環境擾動力矩總和 47
4.6 PEARL-2轉動慣量 49
五、 Simulink模擬與結果 50
5.1 ADCS模擬流程 50
5.2 衛星無控制運動情形 52
5.2.1 衛星無控制無擾動 52
5.2.2 衛星無控制有擾動 57
5.3 Detumbling Control 59
5.4 LVLH Pointing Control 72
5.5 Sun-Pointing Control 80
5.6 Target-Pointing Control 86
六、 總結與未來展望 94
參考文獻 95
附錄A. IGRF13係數 98
附錄B. CubeWheel結構圖 100
參考文獻 [1] Valdemir Carrara and Hélio Koiti Kuga, “Estimating friction parameters in reaction wheels for attitude control.”, Sao Jose dos Campos, SP, Brazil, 2013.

[2] CubeADCS Interface Control Document V3.18, South Africa, 2020.

[3] Mogens, Blanke, Martin Birkelund Larsen, Satellite Dynamics and Control in a Quaternion Formulation, Technical University of Denmark, 2010.

[4] Alicia Johnstone, “CubeSat Design Specification (1U – 12U) REV 14”, San Luis Obispo, CA, 2020.

[5] James R. Wertz, Wiley J. Larson, Space Mission Analysis and Design Third Edition, Douglas Kirkpatrick, United States Air Force Academy Donna Klungle, Microcosm, Inc., 1999.

[6] James R. Wertz, Fundamentals of Spacecraft Attitude Determination and Control, Springer New York Heidelberg Dordrecht London, 2014.

• [7] MARCEL J. SIDI, Spacecraft Dynamics and Control, Cambridge University Press, 1997.

[8] NovAtel OEM719 Product Sheet REV 6

[9] Paweł Zagórski, “Modeling disturbances influencing an Earth-orbiting satellite.”, AGH University of Science and Technology, 2012.

[10] Jeremy Davis, “Mathematical Modeling of Earth′s Magnetic Field.”, Virginia Tech, Blacksburg, 2004.

[11] IAGA V-MOD Geomagnetic Field Modeling
http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

[12] Kasper Fuglsang Jensen, Kasper Vinther, “Attitude Determination and Control System for AAUSAT3.”, Aalborg University, 2010.

[13] Staff of Princeton Satellite Systems, Inc, ATTITUDE AND ORBIT CONTROL USING THE SPACECRAFT CONTROL TOOLBOX V4.6, 2000.

[16] Steven R. Hirshorn , NASA Systems Engineering Handbook, Washington, DC, 2007.

[17] National oceanic and atmospheric administration, National aeronautics and space administration, United states air force, 1976 U.S. Standard Atmosphere, Washington, DC, 1976.

[18] Howard D. Curtis Embry-Riddle, Orbital Mechanics for Engineering Students, Aeronautical University Daytona Beach, Florida, 2015.

[19] International Geomagnetic Reference Field (IGRF-13)
http://wdc.kugi.kyoto-u.ac.jp/igrf/index.html

[20] Magnetic Field of the Earth
http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/MagEarth.html

[21] IDEASSAT-Orbit
https://www.heavens-above.com/orbit.aspx?satid=47458&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT&cul=zh-CHT

[21] Brian Gasberg, Thomsen Jens Nielsen, “CubeSat Sliding Mode Attitude Control - Developing Testbed for Verification of Attitude Control Algorithms.”, Aalborg University, 2016.

[22] Barry B. Goeree, Brian Shucker,“Geocentric Attitude Control of a Small Satellite for Ground Tracking Maneuvers.”, University of Arizona, 1999.

[23] Dániel Bolgár, Nikolaos Biniakos, Alexandru-Cosmin Nicolae, “Fault Tolerant Attitude Control of a Pico-Satellite Equipped with Reaction Wheels and Magnetorquers.”, Aalborg University, 2018.

[24] Alexandre Cortiella et al., “3 CAT-2: Attitude Determination and Control System for a GNSS-R Earth Observation 6U CubeSat Mission.”, Universitat Politècnica de Catalunya, 2017.

[25] Dragonfly Aerospace Chameleon Imager brochure
指導教授 趙吉光(Chi-Kuang Chao) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明