博碩士論文 108623009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.148.106.31
姓名 張元瀚(Yuan-Han Chang)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 VHF雷達濾除飛機訊號與風場研究-希爾伯特-黃轉換之應用
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中壢特高頻(VHF,52MHz)雷達站,約位於桃園國際機場南方12公里處,因其座落飛機航班之起降航道上,故在執行大氣觀測時,飛機回波時常成為污染資料品質的原因之一,而[洪萱芸, 2020]首次提出使用希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)濾除飛機回波的演算法,該演算法可大幅提升觀測資料品質,且濾除效果遠優於小波轉換(Wavelet Transform)的結果,然而此方法僅限於垂直波束的晴空觀測結果。此外,其也尚未實際將濾除過後的資料應用於Velocity-Azimuth Display (VAD)技術計算的三維風場、雨滴粒徑分布..等雷達資料之推演,因此本論文嘗試尋找希爾伯特-黃轉換(HHT)演算法中可應用於大氣晴空觀測中傾斜波束的參數,而後將由演算法濾除之結果經VAD技術計算後,與氣象局剖風儀雷達(449MHz)進行比較,並探討濾除後的實用性。
經分析此演算法濾除飛機時會保留低頻分量,其中若飛機訊號存在低頻波或者在執行經驗模態分解(EMD)時有混波的問題,則會導致在頻譜中低頻出現極為異常的強烈訊號。為了解決此問題,本研究修改了演算法,並且改以使用DC項取代飛機訊號,將飛機訊號所對應時間的實部(In-Phase, I)與虛部(Quadrature, Q)使用DC項取代,而尋找飛機訊號的時間仍使用希爾伯特-黃轉換(HHT),藉此規避上述問題。最後比較「無使用希爾伯特-黃轉換濾除」、「希爾伯特-黃轉換濾除」與「DC項取代法」三者之風場結果與剖風儀風場的相關性(Correlation Coefficient, C.C.)以及方均根誤差(root-mean-square error, RMSE)。整體而言,經過「希爾伯特-黃轉換濾除」與「DC項取代法,其相關性及方均根誤差與「無濾除」相比,皆明顯改善,但若是與「無飛機影響」的情況比較,且皆經過品質控管的結果,「濾除」與「DC項取代法」的相關性以及方均根誤差與「無飛機影響」相比,仍有改善空間。而在有飛機影響下,更進一步將「濾除」與「DC項取代法」相互比較,兩方法不相上下,其中,「DC項取代法」後能正確判斷亂流都卜勒速度的資料點數會多於「濾除」後,且在視覺上該方法的頻譜圖比「濾除」後更為合理,故仍推薦「DC項取代法」用以改善飛機之影響,亦可增加受飛機影響之大氣觀測資料的實用程度。
摘要(英) The distance between the Chunge-Li VHF radar station and Taiwan Taoyuan International Airport is about 12km. In the meanwhile, the Chunge-Li VHF radar station locates in the lane of the taking-off or landing airplane. When the missions of observing the atmosphere are performed by Chunge-Li VHF radar, the echo signal is always polluted by the echo power of the crossing-radar-beam airplane, so the quality of the atmospheric data would be influenced and low quality. However, in the paper, [洪萱芸, 2020], an algorithm was proposed firstly. The algorithm can filter out the signal of airplane by Hilbert-Huang Transform (HHT). The result of the algorithm is better than the result by using Wavelet Transform. The algorithm greatly improves the quality of the observation data. However, the condition is only for the vertical beam and the result of the algorithm isn’t applied to be calculated the 3-D wind field by Velocity-Azimuth Display (VAD) technology、raindrop size distribution …etc. Thus, this study attempts to find the adapting parameter in the algorithm to apply in the observation of the oblique beam. After the aircraft echo is filtered out, the result will try to calculate the 3-D wind field by Velocity-Azimuth Display (VAD) technology. Finally, the wind field would be compared with Central Weather Bureau wind profiler(449MHz) result, and the application would be further discussed.
Through the algorithm, the high frequency component of aircraft echo would be filtered out. However, if the aircraft echo contained the low-frequency component or the problem of mixing wave from doing Empirical Mode Decomposition (EMD), there would be anomalous strong signal at low-frequency of the spectrum. With these problems, the algorithm should be modified. The way is that, with the DC terms of the real part (In-Phase, I) and imaginary part (Quadrature, Q), the amplitude at the time of aircraft echo on the I and Q is replaced. The time of aircraft echo is still detected by the HHT. This algorithm is named “DC term replacement”. Finally, the root-mean-square error(RMSE) and correlation coefficient between the 3-D wind field by “filtering out by HHT” or “DC term replacing” and the wind field of the Central Weather Bureau (CWB) wind profiler can be calculated. In the meanwhile, two indexes between the wind field before filtered out and the wind field of CWB wind profiler can also be calculated. A comparison with two parameters of three different conditions would be made. Not only “filtering out” but also “DC term replacing” result can be more greatly improved than the result before filtered out. To the other condition, the comparison between “no aircraft”、“filtering out” and “DC term replacing” should be made. The results of “filtering out” and “DC term replacing” still need to be improved by comparing with the result of “no aircraft”. To the results of “filtering out” and “DC term replacing”, it is comparable each other. But, visually, the spectrum of “DC term replacement” is more reasonable. Eventually, DC term replacement would be recommended.
The distance between the Chunge-Li VHF radar station and Taiwan Taoyuan International Airport is about 12km. In the meanwhile, the Chunge-Li VHF radar station locates in the lane of the taking-off or landing airplane. When the missions of observing the atmosphere are performed by Chunge-Li VHF radar, the echo signal is always polluted by the echo power of the crossing-radar-beam airplane, so the quality of the atmospheric data would be influenced and low quality. However, in the paper, [洪萱芸, 2020], an algorithm was proposed firstly. The algorithm can filter out the signal of airplane by Hilbert-Huang Transform (HHT). The result of the algorithm is better than the result by using Wavelet Transform. The algorithm greatly improves the quality of the observation data. However, the condition is only for the vertical beam and the result of the algorithm isn’t applied to be calculated the 3-D wind field by Velocity-Azimuth Display (VAD) technology、raindrop size distribution …etc. Thus, this study attempts to find the adapting parameter in the algorithm to apply in the observation of the oblique beam. After the aircraft echo is filtered out, the result will try to calculate the 3-D wind field by Velocity-Azimuth Display (VAD) technology. Finally, the wind field would be compared with Central Weather Bureau wind profiler(449MHz) result, and the application would be further discussed.
Through the algorithm, the high frequency component of aircraft echo would be filtered out. However, if the aircraft echo contained the low-frequency component or the problem of mixing wave from doing Empirical Mode Decomposition (EMD), there would be anomalous strong signal at low-frequency of the spectrum. With these problems, the algorithm should be modified. The way is that, with the DC terms of the real part (In-Phase, I) and imaginary part (Quadrature, Q), the amplitude at the time of aircraft echo on the I and Q is replaced. The time of aircraft echo is still detected by the HHT. This algorithm is named “DC term replacement”. Finally, the root-mean-square error(RMSE) and correlation coefficient between the 3-D wind field by “filtering out by HHT” or “DC term replacing” and the wind field of the Central Weather Bureau (CWB) wind profiler can be calculated. In the meanwhile, two indexes between the wind field before filtered out and the wind field of CWB wind profiler can also be calculated. A comparison with two parameters of three different conditions would be made. Not only “filtering out” but also “DC term replacing” result can be more greatly improved than the result before filtered out. To the other condition, the comparison between “no aircraft”、“filtering out” and “DC term replacing” should be made. The results of “filtering out” and “DC term replacing” still need to be improved by comparing with the result of “no aircraft”. To the results of “filtering out” and “DC term replacing”, it is comparable each other. But, visually, the spectrum of “DC term replacement” is more reasonable. Eventually, DC term replacement would be recommended.
關鍵字(中) ★ 希爾伯特-黃轉換
★ VHF特高頻雷達
關鍵字(英) ★ HHT
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 前言 1
1.1 VHF雷達發展史 1
1.2 研究動機 2
第二章 觀測原理 3
2.1 大氣折射指數(Refractivity Index) 3
2.2 大氣回波機制 4
2.3 Velocity-Azimuth Display (VAD) 6
第三章 儀器介紹與資料處理 10
3.1 中壢特高頻(VHF)雷達 10
3.2 氣象局449MHz剖風儀雷達 13
3.3 資料處理 15
第四章 演算方法 20
4.1 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 20
4.2 濾除飛機訊號步驟 26
4.3 DC項取代法之步驟 33
第五章 結果與討論 39
5.1 濾除與DC項取代法後頻譜圖比較 39
5.2 無飛機影響下,52MHz與449MHz風場比較 42
5.3 有飛機影響下,52MHz與449MHz風場比較 49
5.4 濾除飛機訊號後,52MHz與449MHz風場比較 50
5.5 DC取代法後,52MHz與449MHz風場比較 52
第六章 結論與未來展 54
6.1 結論 54
6.2 未來展望 56
附錄 58
附錄一 58
附錄二 60
參考文獻 67
參考文獻 1. Balsley, B. B. and K. S. Gage, 1980: “The MST radar technique: Potential for middle atmospheric studies”, Pure and Applied Geophys., Vol. 118, P. 452-493.

2. Gage, K. S., W. L. Ecklund, and B. B. Balsley, 1985: “A modified Fresnel scattering model for the parameterization of Fresnel returns”, Radio Science, 20, 1493-1501.

3. Wait, J. R., 1962: “Electromagnetic waves in stratified media”, Pergamon Press, New York, pp 305.

4. Yeh, K. C., and C. H. Liu, 1974: “Theory of ionosphere waves, Academic Press, New York”, pp 464.

5. Y. H. Chu, T. S. Hsu, L. H. Chen, J. K. Chao, C. H. Liu, and J. Rottger, 1990:”A Study of The Characteristics of VHF Radar Echo Power in The Taiwan Area”, Radio Sci., Vol. 25, pp. 527-538

6. Ottersten, H.,1969: “Radar backscattering from the turbulent clear atmosphere”, Radio Sci., 4, 1251-1255.

7. Tatarskii, V. I., 1961: “Wave Propagation in a Turbulent Medium”, McGraw-Hill, New York, 285pp.

8. Browning, K. A. and Wexler, R., 1968: “The determination of kinematic properties of a wind field using Doppler radar”, J. Appl. Meteorol., 7, 105–113.

9. Woodman, R.F. and W.E. Guillen, 1974: “Radar Observations of Winds and Turbulence in the Stratosphere and Mesosphere”, J. Atmos. Sci., Vol.31, p.495-505

10.Koichiro Wakasugi, Shoichiro Fukao, Susumu Kato, Akiyoshi Mizutani, and Masaru Mastuo, 1985:”Air and Precipitation Particle Motions within a Cold Front Measured by the MU VHF Radar”, Radio Sci. Vol. 20, Num. 6, pp. 1233-1240

11.Koichiro Wakasugi, Akiyoshi Mizutani, and Masaru Mastuo, 1986:”A Direct Method for Deriving Drop-Size Distribution and Vertical Air Velocities from VHF Doppler Radar Spectra”, Journal of Atmospheric and Oceanic Technology, Vol.3, pp. 623-629

12. Y.H. Chu and J. K. Chao, 1990:”Aspect Sensitivity at Tropospheric Heights Measured with Vertically Pointed Beam of the Chung-Li VHF Radar”, Radio Sci., Vol. 25, Num. 4, pp. 539-550

13. Norden E. Huang et al, 1998:“The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis”, Royal Society, Volume 454, Issue 1971

14. Norden E. Huang et al, 2003:” A confidence limit for the empirical mode decomposition and Hilbert spectral analysis”, Royal Society, Volume 459, Issue 2037

15. Jidong Gao, Kelvin K. Droegemeier, Jiandong Gong, and Qin Xu, 2004:”A Method for Retrieving Mean Horizontal Wind Profiles from Single-Doppler Radar Observations Contaminated by Aliasing”, GAO ET AL, pp. 1399-1409

16. Norden E. Huang etc, 2009:” On Instantaneous Frequency “, World Scientific, Vol. 1, No. 2, pp. 177-229

17. Zhaohua Wu and Norden E. Huang, 2009:” Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method”, World Scientific, Vol. 1, No. 1, pp. 1-41

18. J.-C. BOISSE, V. KLAUS, AND J.-P. AUBAGNAC, 1998:” A Wavelet Transform Technique for Removing Airplane Echoes from ST Radar Signals”, Journal of Atmospheric and Oceanic Technology, Vol.16, pp. 334-346

19. B. L. Weber, D. B. Wuertz, D. C. Welsh, 1992:” Quality Controls for Profiler Measurements of Winds and RASS Temperatures”, Journal of Atmospheric and Oceanic Technology, Vol.10, pp. 452-464

20. 陳孟遠,利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係,碩士論文,國立中央大學,1990。

21. 陳昭宇,多頻段剖風儀雷達觀測結果之比對與分析,碩士論文,國立中央大學,2019。

22. 林廷翰,中壢特高頻雷達系統初始相位偏差估計與應用,博士論文,國立中央大學,2019。

23. 洪萱芸,以希爾伯特-黃轉換辨識並濾除特高頻雷達飛機雜波,碩士論文,國立中央大學,2020。

ICAO. “Technical Provisions for Mode S Services and Extended Squitter.” Doc/ International Civil Aviation Organization ; 9871-AN/464. ICAO, Montréal, QC,Canada, 1 edition, 2008.
指導教授 朱延祥(Yen-Hsyang Chu) 審核日期 2021-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明