博碩士論文 108623601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.119.159.150
姓名 希亭納(Sittinat Denduonghatai)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 適用於小型衛星二階段展開太陽能板的鎖定鉸鏈的結構設計,分析以及測試
(Design, analysis, and tests of locked hinges for two-stage deployable solar panels onboard small satellites)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 自地面觀測氣輝反演氧原子離子光化學模型
★ 福衛三號S4閃爍指數時空變化與潮汐分析★ 飛鼠號立方衛星電力次系統設計
★ 支援飛鼠號立方衛星之S頻段地面站評估及整測★ 福衛五號軌道推算軟體敏感度及飛行資料分析
★ 中央大學地面系統設計、整測與驗證★ 太空飛行器電力次系統硬體迴路測試平台之建立
★ 縮裝型小衛星氧原子酬載:實作、功能與環境驗證★ 應用先進電離層探測儀與類神經網路以建立初步電漿泡預測模型
★ 飛鼠號立方衛星之飛行軟體及韌體設計★ IDEASSat任務的經驗教訓:大學立方衛星 的設計、測試、在軌運行和異常分析
★ 以立方衛星與微衛星進行GNSS-R/RO觀測的可行性研究★ Deep Space Radiation Probe 結構與熱控的設計模擬與測試驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 小型衛星的能力在過去十年顯著的提高。中央大學所主導的 12U CubeSat SCIntillation and IONosphere-eXtended (SCION-X),主要由四個科學酬載組成,電離層探測器 (CIP), Cion-R,Hyper-SCAN 和 SEUV(太陽紫外線輻射感測儀)。Cubesat的主要結構受限內部有限空間以及因為酬載和次系統所需的能量較大,進而導致的在計算能量預算時會不足,這個問題激發了本篇論文的研究,使用多次展開太陽能電池板的這個想法來增加能量預算,並且對在IDEASSat上由於製造方法而使太陽能板彎曲的問題提出解決方案。 這項工作的重點是解決太陽能電池所產生得能量和機械製造問題,因為團隊目前缺乏該領域方面的知識,此研究可以為團隊墊下研究可展開機制方面的基礎,使用多次可展開太陽能板以增加能量預算,並且這個方法對衛星內部可用空間的影響最小。此研究需要了解台陽能板之間互相連接的鎖定鉸鏈,以確保每個面板之間的剛度 初步研究表明,兩階段可展開太陽能板的概念可以適用於小型衛星, 但它需要兩個太陽能板之間的鎖定鉸鏈,以盡可能減少太陽能板展開時所產生的振動和拍動對衛星的影像。由於適用於小型衛星的鎖定鉸鏈由於其設計復雜性而被限制為,根本沒有人使用過,更遑論鉸鏈本身很難塞入小衛星的所要求的尺寸當中。使得這個研究要求似乎很高,但並非不可能。於是本文便開始研究有關適用於 12U CubeSat 的兩階段可展開太陽能板的設計、實驗和初步結構測試 因為如此,本文進行了鎖定鉸鏈的設計、製造和測試,而且在展開中有兩個主要的方法,分別是只需要一個電路和需要兩個獨立的電路去連接電阻燒斷釣魚線,兩種情況在結構整題完成性方面沒有顯著差異,但單一個電阻的展開機構需要的電路設計比兩個獨立電阻來得更簡單,但在有限的時間會產生較高的反作用力給姿態感測控制儀器(ADCS)去反映並且吸收。相反的分開得單獨的電路可以利用不同的鉸鍊上扭簧的彈力係數去安排不同時間,按照順序去展開,以減少 ADCS 所必須吸收的作用力。 經過驗證,兩階段可展開太陽能電的設計可以承受作用在三個軸上的 15g 正弦振動測試 展開測試和分析結果已被本文合併成如何形成最佳彈簧常數。在此研究中發現在底座鉸鍊處裝上0.008829 N-mm/deg的彈簧並且在鎖定鉸鏈處裝上 0.108 N-mm/deg 可以滿足單一電路展開以及兩個分開電路的展開,而不會對底座鉸鏈產生重大影響,並且這可個分案可以增加 ADCS 吸收擾動扭矩的時間
摘要(英) Capabilities of small satellites have increased significantly throughout the past decade. SCIntillation and IONosphere – eXtended (SCION-X), a 12U CubeSat proposed by National Central University. consists of four scientific payloads, Compact Ionospheric Probe (CIP), Cion-R, Hyper-SCAN and SEUV (Solar Extreme UltraViolet Radiation). The spacecraft was limited by space reserved inside and the power margin due to power consumption of payloads and subsystems which inspired this thesis to study the idea of multi-stage deployable solar panels in order to increase the power margin and counter the warping of solar panels which was long suffered since the predecessor of SCION-X, IDEASSat due to manufacturing problems.
The focus of this work was to tackle problems of power margin and mechanical problems of the solar panels and serves as a basis of the study of deployable mechanisms for the team as we currently lack knowledges in this field. Multi-stage deployable solar panels can be used in order to increase power margin and also has minimal impact to the space available inside the spacecraft. This requires knowledge in locking hinges for the hinge connected between panels in order to ensure rigidity between each panels.
Preliminary study shows the concept of two-stage deployable solar panels can be applied to small satellites, but it requires the locking hinge between two solar panels in order to minimize the vibration and flapping mode when the spacecraft performs maneuvers. The locking hinge for small satellites saw limited to no use at all due to complexity and the hinge itself is hard to cram into the size of small satellites. The requirements seemed to be steep but not impossible. This leads to design, experiment and preliminary structural tests of two-stage deployable solar panels applicable for 12U CubeSat.
Hence, the design, fabrication and tests of locked hinges were conducted, and there are two main concepts of deployment which requires one and two separate burn wire resistors respectively. There is no significant difference in terms of structural integrity between two cases but single-action deployment has a simpler circuit with high reaction force in limited time for the altitude determination and control system unit (ADCS) to absorb, while separate circuits can utilize different torsion spring constants for each hinges and each sequence can be separated by a certain period of time to reduce loads that ADCS unit has to absorb.
It was verified that the design of two-stage deployable solar panels can withstand the sine-burst load equivalent of 15g acting on all three axes.
Deployment tests and results from analysis have been combined to form trade studies of the optimal spring constant. It was found the case of 0.008829 N-mm/deg at base hinge and 0.108 N-mm/deg at locked hinges can satisfy both single-action and separate circuits without having penalties of major impact to the base hinge which can increases the time for ADCS unit to absorb disturbance torques.
關鍵字(中) ★ 可展開的機構
★ 適用於小型衛星的鎖定鉸鏈
★ 兩階段可展開太陽能板
關鍵字(英) ★ Deployable mechanisms in space
★ locked hinges for small satellite
★ two-stage deployable solar panels
論文目次 Table of Content
ABSTRACT ............................................................................................................................ II
摘要 ........................................................................................................................................ III
ACKNOWLEDGEMENT .................................................................................................... IV
LIST OF FIGURES ............................................................................................................. VII
LIST OF TABLES .................................................................................................................. II
1. INTRODUCTION ........................................................................................................... 1
1.1 Background .......................................................................................................................................... 1
1.2 Thesis Organization ............................................................................................................................. 4
2. RELATED WORKS ....................................................................................................... 5
2.1 Concepts of Deployable Solar Panels .................................................................................................. 5
2.1.1 First-MOVE from Technische Universität München ....................................................................... 5
2.1.2 University of Glasgow’s 3P PocketQube ......................................................................................... 6
2.1.3 Concepts of multi-stage deployable solar panels for 1, 2, 3, and 6U CubeSat ................................ 7
2.2 Movable Hinges Used on Small satellites ............................................................................................ 8
2.2.1 Torsion Spring Driven Hinges ......................................................................................................... 8
2.2.2 Locked Hinges Onboard Small Satellites ........................................................................................ 9
2.2.3 Tape Springs .................................................................................................................................. 10
2.3 Principal concepts of Cold Welding in Space .................................................................................... 11
2.4 Quasi-Static load tests ........................................................................................................................ 12
2.5 Lesson learned from IDEASSat .......................................................................................................... 13
3. METHODOLOGY ........................................................................................................ 16
3.1 Revision of Hinges .............................................................................................................................. 16
3.2 Derivation of Natural Frequency of Two-stage Deployable Solar Panels ........................................ 20
3.3 Trade Study of Each Solar Panels Type ............................................................................................. 24
3.4 Trade Study of Hinges Connecting Each Panel ................................................................................. 26
3.5 Requirements for the Design of Locked Hinges ................................................................................. 28
3.6 First Locked Hinges Concept Design ................................................................................................. 31
3.7 Second Locked Hinges ........................................................................................................................ 32
3.7.1 Second Locked Hinges Concept Design ........................................................................................ 32
3.7.2 Two-stage Deployable solar panels design ................................................................................... 34
3.7.3 Second Locked Hinges Deployment Analysis ................................................................................ 37
3.7.4 Second Locked Hinge Quasi-Static Analysis ................................................................................. 40
3.7.5 Second Locked Hinge Static Structural Analysis ........................................................................... 41
3.8 Second Locked Hinge With an Updated Design From the First Version ........................................... 43
4. ANALYSIS AND EXPERIMENTAL RESULTS ...................................................... 46
4.1 First Locked Hinge Static Analysis .................................................................................................... 46
4.2 Second Locked Hinge Results ............................................................................................................. 47
4.2.1 Second Locked Hinge Design and Fit Check ................................................................................. 47
4.2.2 Second Locked Hinge Motion Analysis ......................................................................................... 52
4.2.3 Second Locked Hinge Deployment Tests ....................................................................................... 56
4.2.4 Second Locked Hinge Quasi-Static Analysis ................................................................................. 64
4.2.5 Results of Second Locked Hinge Static Analysis ........................................................................... 67
4.2.6 Second Locked Hinge Sine-Burst Tests ......................................................................................... 69
5. DISCUSSION ................................................................................................................. 77
5.1 Hinge Deployment Tests ..................................................................................................................... 77
5.1.1 One Hinge Deployment Tests ........................................................................................................ 77
VI
5.2 Two Hinges Deployment Tests ........................................................................................................... 78
5.2.1 Two Hinges Deployment Tests in Single Action ............................................................................ 78
5.2.2 Two Hinges Deployment Tests in Separate Sequence ................................................................... 79
5.3 Two Hinges Deployment Simulation .................................................................................................. 79
5.3.1 Single-Action Deployment ............................................................................................................. 80
5.3.2 Separate Sequence Deployment ..................................................................................................... 81
5.4 Quasi-Static Simulation ...................................................................................................................... 81
5.5 Structural Analysis in Deployment Process and Usage ..................................................................... 82
5.6 Sine-Burst Tests .................................................................................................................................. 82
5.7 Trade Study Table .............................................................................................................................. 85
6. CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH ..................... 88
6.1 Conclusion .......................................................................................................................................... 88
6.2 Suggestions ........................................................................................................................................ 89
REFERENCE ........................................................................................................................ 91
APPENDIX ............................................................................................................................ 94
I. Drawings for the Solar Panel X ......................................................................................................... 94
II. Drawing for the Solar Panel Y ........................................................................................................... 95
III. Drawing for HingeB1V1 (SS316L) ..................................................................................................... 96
IV. Drawing for HingeB2V2 (SS316L) ..................................................................................................... 97
V. Drawing for Locking Mechanism (Al6061) ........................................................................................ 98
VI. Drawing for Hinge pin (Al6061) ........................................................................................................ 99
VII. PCB Layout of Panel X ..................................................................................................................... 100
VIII. PCB Layout of Panel Y ..................................................................................................................... 101
VII
List of Figures
FIGURE 1 RENDERED IMAGE OF SCION-X _________________________________________________ 1
FIGURE 2 CIP PAYLOAD __________________________________________________________________ 2
FIGURE 3 OPERATION CONCEPT OF CION-R _______________________________________________ 2
FIGURE 4 RENDERED IMAGE OF HYPER-SCAN _____________________________________________ 2
FIGURE 5 RENDERED IMAGE OF SEUV ____________________________________________________ 3
FIGURE 6 THE SOLAR PANELS OF IDEASSAT, BEFORE INTEGRATING WITH P-POD. NOTICE THE WARPING OF THE DEPLOYABLE PANEL IN THE UPPER LEFT CORNER __________________ 3
FIGURE 7 DEPLOYABLE SOLAR PANELS FROM THE FIRST-MOVE, TUM ______________________ 5
FIGURE 8 STRUCTURE AND DEPLOYMENT PROCESS OF POCKETQUBE ______________________ 6
FIGURE 9 THE THIN HINGE AT STOWED (LEFT) AND DEPLOYED (RIGHT) CONFIGS ____________ 6
FIGURE 10 DEPLOYMENT CONCEPT FOR THREE-STAGE SOLAR PANELS _____________________ 7
FIGURE 11 HINGES CONNECTED BETWEEN PANELS ________________________________________ 8
FIGURE 12 90-DEGREE HINGE CAD DESIGN ________________________________________________ 9
FIGURE 13 CONCEPT OF LOCKED HINGES FOR 3U CUBESAT _______________________________ 10
FIGURE 14 THE DESIGN OF TAPE MEASURE SPRING _______________________________________ 11
FIGURE 15 CENTRIFUGE TESTING MACHINE WITH SATELLITE MOUNTED (UYGUR, 2015) _____ 12
FIGURE 16 IDEASSAT ON THE VIBRATION TABLE FOR SINE-BURST TESTS. __________________ 13
FIGURE 17 SIDE VIEW OF IDEASSAT, THE STAR TRACKER (RED CIRCLE) COVERED BY SOLAR PANELS IN CLOSED CONFIGURATION _______________________________________________ 13
FIGURE 18 IN-FLIGHT DATA OF SOLAR PANELS ___________________________________________ 14
FIGURE 19 AVERAGE HUMIDITY IN COLORADO, 2020 (AVERAGE MONTHLY HUMIDITY IN BOULDER (COLORADO), UNITED STATES OF AMERICA) ________________________________ 15
FIGURE 20 AVERAGE HUMIDITY IN TAIWAN, YEAR 2020 (AVERAGE MONTHLY HUMIDITY IN TAIPEI (TAIPEI MUNICIPALITY), TAIWAN). _____________________________________________ 15
FIGURE 21 COMPUTER-AIDED DESIGN (CAD) MODEL OF HINGES SHOWN ZERO-TOLERANCE DISTANCE OF THE MODEL _________________________________________________________ 16
FIGURE 22 MARKING FOR 2.6MM FILLET RADIUS PROTOTYPE HINGE _______________________ 17
FIGURE 23 GAPS IN CAD DESIGN FOR MANUFACTURING PROCESS TOLERANCE _____________ 17
FIGURE 24 CONTACT BETWEEN HINGE-PIN _______________________________________________ 18
FIGURE 25 CONTACT BETWEEN HINGE-HINGE AT THE FIRST LOCATION ____________________ 19
FIGURE 26 CONTACT BETWEEN HINGE-HINGE AT THE SECOND LOCATION _________________ 19
FIGURE 27 DESIGN OF TWO HINGE CONFIGURATION ______________________________________ 20
FIGURE 28 CONTACT BETWEEN HINGE-HINGE AT THE THIRD LOCATION ___________________ 20
FIGURE 29 FREE BODY DIAGRAM FOR TWO-STAGE DEPLOYABLE SOLAR PANELS ___________ 21
FIGURE 30 PROTOTYPE DESIGN OF THE FIRST LOCKED HINGE CONCEPT ___________________ 32
FIGURE 31 FRONT AND SIDE VIEW OF THE FIRST HINGE CONCEPT _________________________ 32
FIGURE 32 SECOND LOCKED HINGE IN STOWED CONFIGURATION _________________________ 33
FIGURE 33 SECOND LOCKED HINGE IN DEPLOYED CONFIG ________________________________ 33
FIGURE 34 LOCKED PART FOR SECOND DESIGN __________________________________________ 33
FIGURE 35 PIN FOR LOCKED HINGE ______________________________________________________ 33
FIGURE 36 COMPONENTS FEATURE IN THE SECOND CONCEPT LOCKED HINGES ASSEMBLY _ 34
FIGURE 37 ANOTHER VIEW FOR COMPONENTS FEATURE IN THE SECOND CONCEPT LOCKED HINGES ASSEMBLY________________________________________________________________ 35
FIGURE 38 HINGE PIN STOPPER ON INSPIRESAT-1 _________________________________________ 35
FIGURE 39 90-DEGREE HINGE PIN STOPPER ON THE TWO-STAGE DESIGN PROTOTYPE _______ 36
FIGURE 40 LOCKED HINGE PIN STOPPER DESIGN _________________________________________ 36
FIGURE 41 TRENCHED FEATURE ON THE MOUNTING PLATE _______________________________ 37
FIGURE 42 TWO-STAGE DEPLOYABLE SOLAR PANELS AFTER DEPLOYED ___________________ 38
FIGURE 43 FIRST DEPLOYMENT CONCEPT ________________________________________________ 38
FIGURE 44 MOTION OF THE SOLAR PANELS AFTER FULL DEPLOYMENT____________________ 39
FIGURE 45 SECOND CONCEPT OF DEPLOYMENT __________________________________________ 39
FIGURE 46 (A) THE FIRST FISHING LINE WAS BURNED AND LEAVE THE SECOND FISHING LINE (B) SECOND FISHING LINE IS BURNED AND THE PANELS ARE FULLY DEPLOYED _______ 39
FIGURE 47 FORCE ACTING ON Z-AXIS DIRECTION TO THE SIMULATION ____________________ 40
FIGURE 48 MODEL USED IN QUASI-STATIC ANALYSIS SIMULATION ________________________ 41
FIGURE 49 FORCE ACTING ON LOCKED HINGES IN COUNTER-CLOCKWISE MOTION _________ 42
VIII
FIGURE 50 FORCE ACTING ON LOCKED HINGES IN CLOCKWISE MOTION ___________________ 42
FIGURE 51 FORCE AND BOUNDARY CONDITION OF THE ANALYSIS ________________________ 43
FIGURE 52 CONTACT AREA ON THE HINGE WHICH IS PRONE TO THE FORCE. _______________ 43
FIGURE 53 FIRST VERSION OF LOCKING MECHANISM _____________________________________ 44
FIGURE 54 MODIFIED LOCKING COMPONENTS IN DEPLOYED CONDITION __________________ 44
FIGURE 55 CROSS SECTION OF THE LOCKING COMPONENT IN STOWED CONDITION _________ 45
FIGURE 56 STRESS ANALYSIS OF SS316L HINGE WITH 3N FORCE ___________________________ 46
FIGURE 57 DEFORMATION ANALYSIS OF 316L HINGE WITH 3N FORCE ______________________ 46
FIGURE 58 DESIGNED LATERAL PROTRUSION FROM THE SURFACE ________________________ 48
FIGURE 59 WIRES FOR RESISTORS _______________________________________________________ 48
FIGURE 60 ELECTRICAL CONNECTOR FOR CIRCUITS ______________________________________ 49
FIGURE 61 IDEASSAT FISHING WIRE TIED-DOWN _________________________________________ 50
FIGURE 62 TOP NUT WAS PARTIALLY COVERED BY EPOXY WHILE BOTTOM NUT WAS FULLY COVERED ________________________________________________________________________ 50
FIGURE 63 METHODS OF TIED DOWN NYLON WIRE BY SCREWS ___________________________ 51
FIGURE 64 STOPPERS INTEGRATED WITH WASHERS TO REDUCE GAPS _____________________ 51
FIGURE 65 FIT CHECK PROVES THE SUBSYSTEM IS CONSTRAINED BELOW 10 MM PROTRUSION LIMIT ____________________________________________________________________________ 52
FIGURE 66 DEPLOYMENT ANALYSIS OF ONE SOLAR PANEL _______________________________ 53
FIGURE 67 LEFT, THE PROTOTYPE HINGE AND RIGHT, THE ACTUAL HINGE _________________ 56
FIGURE 68 LOCKED HINGES WITH INTEGRATED SPRINGS _________________________________ 56
FIGURE 69 CONNECTION OF PANEL X WITH POWER SUPPLY _______________________________ 57
FIGURE 70 WIRES CONNECTED ON POWER SUPPLY _______________________________________ 58
FIGURE 71 THE YELLOW WIRE CONNECTED TO THE SECOND RESISTOR ____________________ 58
FIGURE 72 DEPLOYMENT TESTS FIXTURE PLATE _________________________________________ 59
FIGURE 73 ONE SOLAR PANEL ATTACHED TO FIXTURE PLATE _____________________________ 59
FIGURE 74 LEG OF THE SPRING PROTRUDES OUT OF THE CHASSIS _________________________ 60
FIGURE 75 LEG OF THE SPRING SNIPPED OUT AND FLUSHED INTO THE CHASSIS ____________ 60
FIGURE 76 GAPS BETWEEN PANELS WITH SECOND FISHING WIRE TIED DOWN ______________ 64
FIGURE 77 STRESS FROM QUASI-STATIC IN Z DIRECTION WITH ADDITIONAL FISHING WIRE _ 65
FIGURE 78 STRESS FROM QUASI-STATIC IN Z DIRECTION WITHOUT ADDITIONAL FISHING WIRE __________________________________________________________________________________ 65
FIGURE 79 DEFORMATION FROM QUASI-STATIC IN Z DIRECTION WITH ADDITIONAL FISHING WIRE _____________________________________________________________________________ 66
FIGURE 80 DEFORMATION FROM QUASI-STATIC IN Z DIRECTION WITHOUT ADDITIONAL FISHING WIRE ____________________________________________________________________ 67
FIGURE 81 STRUCTURAL ANALYSIS ON LOCKING COMPONENT ____________________________ 68
FIGURE 82 REACTION FORCE FROM THE LOCKING PART TO THE HINGE ____________________ 68
FIGURE 83 STRESS FROM THE FORCE CREATED BY SLEW RATE OF ADCS ___________________ 69
FIGURE 84 DISPLACEMENT FROM THE FORCE BY SLEW RATE OF ADCS ____________________ 69
FIGURE 85 FISHING WIRE SECURED TAKEN BEFORE THE TEST _____________________________ 70
FIGURE 86 TEST SPECIMENS AND EQUIPMENT PACKED FOR SHIPPING _____________________ 71
FIGURE 87 CONTAINER BOX FOR SHIPPING _______________________________________________ 71
FIGURE 88 TEST SUBJECT IN Z-AXIS _____________________________________________________ 72
FIGURE 89 TEST SUBJECT IN X-AXIS _____________________________________________________ 72
FIGURE 90 TEST SUBJECT IN Y-AXIS _____________________________________________________ 73
FIGURE 91 RESULTS OF SINE-BURST TESTS IN X-AXIS _____________________________________ 73
FIGURE 92 RESULTS IN SINE-BURST TESTS IN Y-AXIS _____________________________________ 74
FIGURE 93 RESULTS IN SINE-BURST TESTS IN Z-AXIS _____________________________________ 74
FIGURE 94 EPOXY NUTS OBSERVED FROM DEPLOYMENT TEST AFTER SINE-BURST TEST ____ 75
FIGURE 95 FIXTURE AFTER VIBRATION TESTS ____________________________________________ 76
FIGURE 96 DEPLOYMENT TEST AFTER VIBRATION TEST __________________________________ 76
FIGURE 97 INITIAL SATURATED ANGLE BEFORE SURFACE FINISHING ON THE HINGE _______ 77
FIGURE 98 CONDITIONS USED IN ADCS FORCE CALCULATION _____________________________ 80
FIGURE 99 WASHERS INTEGRATED WITH NUTS TO REDUCE GAPS BETWEEN PANELS _______ 82
FIGURE 100 FISHING WIRE AFTER VIBRATION TESTS ______________________________________ 83
FIGURE 101 KAPTON TAPE HOLDING THE CONNECTOR WIRE ______________________________ 83
FIGURE 102 RESONANCE SURVEY IN X-AXIS BEFORE THE SINE-BURST TEST ________________ 84
FIGURE 103 RESONANCE SURVEY IN X-AXIS AFTER THE SINE-BURST TEST _________________ 84
FIGURE 104 TRENCHED-LIKE FEATURE ON DEPLOYMENT FIXTURE ________________________ 89
IX
FIGURE 105 GRAVITY-COMPENSATION SYSTEM (AYANA NAKAYAMA, 2019) ________________ 90
參考文獻 2216 B/A GRAY 3M Electronic Specialty: Mouser. Mouser Electronics. (n.d.). https://www.mouser.tw/ProductDetail/3M-Electronic-Specialty/2216-B-A-GRAY?qs=ItEYEd4DnG3o%2FMYmbUiNzA%3D%3D.
Abbasi, V., Azria, B., Tabarah, E., Menon, V., Phillips, E., & Bedirian, M. (2004). Improved 7-DOF Control of ISS Robotic Manipulators. Space OPS 2004 Conference. https://doi.org/10.2514/6.2004-610-407
Average monthly humidity in Boulder (Colorado), United States of America. World Weather & Climate Information. (n.d.). https://weather-and-climate.com/average-monthly-Humidity-perc,boulder-colorado-us,United-States-of-America.
Average monthly humidity in Taipei (Taipei municipality), Taiwan. World Weather & Climate Information. (n.d.). https://weather-and-climate.com/average-monthly-Rainfall-Temperature-Sunshine,taipei-tw,Taiwan
B. Perry, (personal communication, January 14, 2020)
Blue Canyon Technologies. (n.d.). https://bluecanyontech.com/components.

Boyajian, S., B. Schwab, A. Chandran, A. Verma, Priyadarshan H., A. Kumar, KVLN Malikarjun, Y. Duann, L. Chang, C.-K. Chao, R. Tsai-Lin, T.-Y. Tai, W.-H. Luo, C.-T. Liao, C.-J. Chung, and R. Duann (2019), INSPIRESat-1: An Ionosphere and Solar X-ray Observing Microsat, Proceedings of the AIAA/USU Conference on Small Satellites, Next On the Pad, SSC19-V-06, https://digitalcommons.usu.edu/smallsat/2019/all2019/93/.
CalPoly. (2020). CubeSat design Specification Rev.14. California.
Canisterized Satellite Dispenser. Planetary Systems Corp. (2021, March 16). https://www.planetarysystemscorp.com/product/canisterized-satellite-dispenser/.
CubeSat Design Specification - SpaceQ. (n.d.). https://www.spaceq.ca/wp-content/uploads/2017/07/cds_rev13_final2.pdf.
Duann, Y., L.C. Chang, C.-K. Chao, Y.-C. Chiu, R. Tsai-Lin, T.-Y. Tai, W.-H. Luo, C.-T. Liao, H.-T. Liu, C.-J. Chung, R. Duann, C.-L. Kuo, J.-Y. Liu, Z.-M. Yang, G.F. Gacal, A. Chandran, Priyardarshan H., A. Verma, T.-W. Fang, and Sarthak S. (2020), IDEASSat: A 3U CubeSat Mission for Ionospheric Science, Adv. Space Res., 66, https://doi.org/10.1016/j.asr.2020.01.012.
E. Luraschi, (personal communication, January 13, 2020)
ISIPOD CubeSat Deployer. ISISPACE. (2020, December 29). https://www.isispace.nl/product/isipod-cubesat-deployer/.

Jeong, J. W., Yoo, Y. I., Shin, D. K., Lim, J. H., Kim, K. W., & Lee, J. J. (2014). A novel tape spring hinge mechanism for quasi-static deployment of a satellite deployable using shape memory alloy. Review of Scientific Instruments, 85(2), 025001. https://doi.org/10.1063/1.4862470
Konecny, G. (2004). Small satellites – A tool for earth observation? XXth ISPRS Congress.
Kulu, E. (n.d.). What is a CubeSat? Nanosats Database. https://www.nanosats.eu/cubesat.
Langer, Martin & Olthoff, Claas & Harder, Jan & Fuchs, Christian & Dziura, Martin & Hoehn, Alexander & Walter, Ulrich. (2015). Results and lessons learned from the CubeSat mission First-MOVE.
Larger, 6U and 12U CubeSats for ISS Deployment. Nanoracks. (2020, May 20). https://nanoracks.com/larger-cubesat-standard-for-iss-deployment/.
Li, D., Harkness, P., & Walkinshaw, T. (2017). Design of a solar panel deployment and tracking system for Pocketqube pico-satellite. 2017 IEEE Aerospace Conference. https://doi.org/10.1109/aero.2017.7943910
Mason, J.P., Baumgart, M., Rogler, B., Downs, C., Williams, M., Woods, T.N., Palo, S., Chamberlin, P.C., Solomon, S., Jones, A., Li, X., Kohnert, R., Caspi, A., (2017) MinXSS-1 CubeSat on-orbit pointing and power performance: the first flight of the blue canyon technologies XACT 3-axis attitude determination and control system. J. Small Satellites 6 (3), 651–662.
Metals Handbook, Vol.2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International 10th Ed. 1990.
Merstallinger, A., & Sales, M. (2010). Cold welding due to impact and fretting under vacuum.: Considering scaling for applications in space mechanisms. Mechanical Properties of Complex Intermetallics, 191–248. https://doi.org/10.1142/9789814322171_0006
M. Tolstoj, (personal communication, January 23, 2020)
Music wire steel. (n.d.) https://www.spacematdb.com/spacemat/manudatasheets/springs%20music%20wire.pdf

QuadPack CubeSat deployer. ISISPACE. (2021, April 30). https://www.isispace.nl/product/quadpack-cubesat-deployer/.
Solís-Santomé, A., Urriolagoitia-Sosa, G., Romero-Ángeles, B., Torres-San Miguel, C. R., Hernández-Gómez, J. J., Medina-Sánchez, I., Couder-Castañeda, C., Grageda-Arellano, J. I., & Urriolagoitia-Calderón, G. (2019). Conceptual design and finite element method validation of a new type of self-locking hinge for deployable CubeSat solar panels. Advances in Mechanical Engineering, 11(1), 168781401882311. https://doi.org/10.1177/1687814018823116

The Miniature X-ray Solar Spectrometer (MinXSS). (n.d.). https://lasp.colorado.edu/home/minxss/

Thum, A. H. (n.d.). Nichrome Burn Wire Release Mechanism for CubeSats. NTIS. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/N20130008857.xhtml.

Uygur, A. B. (2015). Quasi-static structural test of satellites. 7th International Conference on Recent Advances in Space Technologies.
指導教授 張起維(Loren C. Chang) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明