博碩士論文 108624001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.145.156.250
姓名 陳建語(Jian-Yu Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討
(The study on stochastic thermal-hydraulic-mechanial fully coupled model for porous media with dependent parameters)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
★ 台灣西南部因地下水開發與構造活動引致地層下陷之研究★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example
★ 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan
★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例
★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例
★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例★ Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱-水-力(Thermal-Hydraulic-Mechanical, THM)耦合模式,描述著熱學、水力學以及力學之間相互影響的行為,為地下工程中一項重要的安全評估技術;序率蒙地卡羅模式比起傳統定率模式,可以額外提供THM耦合複雜行為造成的不確定性與相關性評估。相依參數(dependent parameter,指參數值隨外在條件改變)模式當中的材料特性,能夠更完整的詮釋材料介質在THM耦合系統中的真實行為。目前國際上的相關研究在序率THM模式與相依參數THM模式的交互作用行為探討尚有不足,也尚未有完整的序率結合相依參數THM模式的探討。因此本研究使用有限元素軟體COMSOL MULTIPHYSICS,並以用過核子燃料最終處置場為例進行分析,使用台灣具有儲放潛力的母岩以及緩衝材料為標的,發展一維相依參數THM全耦合模式。本研究首先建立概念模型進行定率THM模式分析,接著以地質統計開源程式碼GSLIB以及本研究以Python開發的高斯序列模擬程式碼,分別產製水力參數、熱傳參數以及力學參數為隨機場的實現場(Realizations),並將上述參數分成四個案例導入THM模式進行序率蒙地卡羅模擬。計算共變異函數和平均數來探討位移、孔隙水壓以及溫度等三變數的不確定性和各變數之間的交互作用行為,並比較相依參數模式(DPM)以及非相依參數模式(IPM)結果的差異。本研究結果顯示,DPM顯著影響了定率模式中孔隙水壓變化量的分布,而溫度以及位移則受到較少影響,然而部分參數不均勻的分布導致了DPM與IPM有不同的穩定狀態。序率模式案例當中顯示,水力參數、熱傳參數、力學參數的擾動對THM系統中的孔隙水壓影響最大,但是系統平衡之後,水力參數案例的變數不確定性會趨於0,熱傳參數以及力學參數案例的變數不確定性則會趨於一個穩定數值。此一現象代表熱傳參數以及力學參數的異質性影響了各實現場最終穩定狀態,另外,DPM也顯著影響了各案例當中不確定性的分布狀態以及數值。共變異數結果則顯示,不同的序率案例顯示出不同的物理行為,而這些物理行為除了因為受到THM耦合、異質參數的影響之外,也受到模式設定的影響。另外,DPM也因為相依參數在空間分布的趨勢而影響了部分變數之間交互作用的關係性。綜合以上結果可以得知,採用THM多重物理量耦合數值模式進行定率或是序率的分析時,採用相依參數能夠更詳細的分析且獲得較貼近實際行為的評估結果。
摘要(英) For the issue of safety assessment of final disposal sites for spent nuclear fuel, the study on coupled thermal-hydraulic-mechanical (THM) simulation seldom discusses the cross-interactions between random variables by using the stochastic concept with dependent parameters, which is defined as parameter value changes with the changed environmental condition. Stochastic analysis is an important issue for the safety assessment whereas the THM system with dependent parameters are close to the reality. Therefore, this study used the software COMSOL Multiphysics to develop a fully-coupled THM model with dependent parameters and adopted Monte Carlo simulation with the hydraulic properties, thermal properties, and mechanical properties being the random variables to assess the covariance functions between all the variables. Geostatistical code, GSLIB, and the Python code developed in this study is used to generate the random fields for a 1D fully-coupled THM model. Three variables in the THM model are the displacement, pore water pressure, and temperature, which would interact with each other. The mean and covariance were calculated to evaluate the uncertainty and cross-interactions between these random variables. The results showed that DPM largely affects the distribution of pore water pressure but less for those of displacement and temperature. Non-uniform distributed parameters make the results of DPM and IPM become different when the system reach a stable condition. The stochastic results show that pore water pressure is the most sensitive variable under the perturbations of the hydraulic, thermal, and mechanical parameters. After the system reach the stable condition, the uncertainty will become 0 in the hydraulic variable, but not in thermal and mechanical variables. This indicates that heterogeneity of thermal and mechanical properties affects the stable condition in each realization for both IPM and DPM. The covariance results show that the coupled THM theory, heterogeneous parameters and model settings are the main reasons to induce different physical behavior in different stochastic cases. Morever, DPM also affects the coupled behavior due to the change of the parameters values. Therefore, DPM should be considered in the safety assessment of final disposal sites for spent nuclear fuel.
關鍵字(中) ★ 熱-水-力全耦合模式
★ 深層地質處置場
★ 序率蒙地卡羅法
★ 相依參數系統
★ 共變異函數
★ 交互作用行為
關鍵字(英) ★ Final disposal site for spent nuclear fuel
★ Fully-coupled thermal-hydraulic-mechanical model
★ Monte Carlo simulation
★ Dependent parameter
★ Covariance function
★ Cross-interactions
論文目次 摘要 i
Abstract iii
目錄 vi
圖目錄 ix
表目錄 xiv
符號對照表 xv
第一章 緒論 1
1-1 研究背景介紹 1
1-2 研究動機與研究目的 3
1-3 研究步驟與流程 4
第二章 文獻回顧 5
2-1 THM多重物理量耦合理論發展 5
2-2 用過核子燃料最終處置場 6
2-3 地熱能源 7
2-4 石油、油氣以及地底礦藏探勘 8
2-5 二氧化碳封存 9
2-6 斷層滑移熱增壓(Thermal pressurization) 9
第三章 研究方法與理論介紹 11
3-1 THM模式控制方程 11
3-2 相依參數系統 13
3-2-1 孔隙率 14
3-2-2 水力傳導係數、滲透率 14
3-2-3 楊氏模數、Biot’s有效應力係數 15
3-2-4 熱傳導係數、比熱 16
3-2-5 流體參數 17
3-3 蒙地卡羅法 18
3-3-1 序列高斯模擬方法概述 19
3-3-2 簡單克利金(Simple Kriging) 19
3-3-3 條件模擬以及非條件模擬(Conditional and Unconditional Simulation) 22
第四章 THM模式設定與隨機場參數驗證 24
4-1 THM模式設定 24
4-1-1 溫度 25
4-1-2 模型尺度 26
4-1-3 孔隙水壓邊界 26
4-1-4 固定約束邊界 26
4-2 參數以及數值模式設定 26
4-3 隨機場參數驗證 30
4-3-1 案例一(水力傳導係數為隨機變數) 31
4-3-2 案例二(熱傳導係數與比熱為隨機變數) 33
4-3-3 案例三(楊氏模數與柏松比為隨機變數) 35
4-3-4 案例四(水力傳導係數、熱傳導係數、比熱、楊氏模數以及柏松比) 36
第五章 模式計算效率評估 37
5-1 計算效率以及平行運算概述 37
5-2 COMSOL MULTIPHYSICS 計算效率優化 41
5-3 Python計算效率優化 50
第六章 THM模式定率解 53
6-1 MX-80緩衝材料模式定率解 53
6-1-1 MX-80緩衝材料物理行為探討 53
6-1-2 MX-80緩衝材料DPM與IPM比對 56
6-2 母岩模式定率解 58
6-2-1 母岩模式物理行為探討 58
6-2-2 母岩模式DPM與IPM比較 61
6-3 母岩與MX-80模式比對 64
第七章 THM模式序率解 66
7-1 序率案例一(使用水力傳導係數為隨機變數) 66
7-1-1 MX-80平均值結果 66
7-1-2 MX-80變異數結果(不確定性) 69
7-1-3 MX-80共變異數結果(交互作用) 73
7-1-4 母岩平均值結果 78
7-1-5 母岩變異數結果(不確定性) 81
7-1-6 母岩共變異數結果(交互作用) 84
7-2 序率案例二(使用熱傳導係數以及比熱為隨機變數) 88
7-2-1 母岩平均值結果 88
7-2-2 母岩變異數結果(不確定性) 91
7-2-3 母岩共變異數結果(交互作用) 94
7-3 序率案例三(使用楊氏模數以及柏松比為隨機變數) 104
7-3-1 母岩平均值結果 104
7-3-2 母岩變異數結果(不確定性) 107
7-3-3 母岩共變異數結果(交互作用) 110
7-4 序率案例四(使用前述案例所有參數為隨機變數) 116
7-4-1 母岩平均值結果 116
7-4-2 母岩變異數結果(不確定性) 119
7-4-3 母岩共變異數結果(交互作用) 122
第八章 結論與建議 128
8-1 結論 128
8-2 建議 132
參考文獻 [1] Shortall, R., B. Davidsdottir, and G. Axelsson. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks". Renewable and Sustainable Energy Reviews, 44, 391-406. 2015.
[2] Lal, R. "Carbon sequestration". Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1492), 815-830. 2008.
[3] Omer, A. M. "Energy, environment and sustainable development". Renewable and Sustainable Energy Reviews, 12 (9), 2265-2300. 2008.
[4] Tester, J. W., B. J. Anderson, A. Batchelor, D. Blackwell, R. DiPippo, E. Drake, J. Garnish, B. Livesay, M. Moore, and K. Nichols. "The future of geothermal energy". Massachusetts Institute of Technology, 358, 2006.
[5] Birkholzer, J. T., C.-F. Tsang, A. E. Bond, J. A. Hudson, L. Jing, and O. Stephansson. "25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes". International Journal of Rock Mechanics and Mining Sciences, 122, 103995. 2019.
[6] JNC. H12 : Project to establish the scientific and technical basis for HLW disposal in Japan. Overview Report. JNC TN1410 2000-001. 2000.
[7] Tsang, C.-F., O. Stephansson, L. Jing, and F. Kautsky. "DECOVALEX Project: from 1992 to 2007". Environmental Geology, 57 (6), 1221-1237. 2009.
[8] 台灣電力公司,(2017),用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段我國用過核子燃料最終處置技術可行性評估報告SNFD2017報告(TPC-SNFD2017-V1)。
[9] 行政院原子能委員會,(https://www.aec.gov.tw/)。
[10] SKB. "Final repository facility Underground design premises/D2". 2007.
[11] Karanki, D. R., H. S. Kushwaha, A. K. Verma, and S. Ajit. "Uncertainty analysis based on probability bounds (p‐box) approach in probabilistic safety assessment". Risk Analysis: An International Journal, 29 (5), 662-675. 2009.
[12] Buchwald, J., A. Chaudhry, K. Yoshioka, O. Kolditz, S. Attinger, and T. Nagel. "DoE-based history matching for probabilistic uncertainty quantification of thermo-hydro-mechanical processes around heat sources in clay rocks". International Journal of Rock Mechanics and Mining Sciences, 134, 104481. 2020.
[13] Rutqvist, J., D. Barr, J. T. Birkholzer, K. Fujisaki, O. Kolditz, Q.-S. Liu, T. Fujita, W. Wang, and C.-Y. Zhang. "A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories". Environmental Geology, 57 (6), 1347-1360. 2009.
[14] Pan, P.-Z., X.-T. Feng, X.-H. Huang, Q. Cui, and H. Zhou. "Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton". Environmental Geology, 57 (6), 1299. 2009.
[15] Garitte, B., T. Nguyen, J. Barnichon, B. Graupner, C. Lee, K. Maekawa, C. Manepally, G. Ofoegbu, B. Dasgupta, and R. Fedors. "Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating". Environmental Earth Sciences, 76 (9), 345. 2017.
[16] Wang, S.-J., J.-Y. Chen, and K.-C. Hsu. "Investigation of cross-interactions of coupled thermal-hydraulic-mechanical model using stochastic simulations". Computers and Geotechnics, 133, 104020. 2021.
[17] Biot, M. A. "General theory of three‐dimensional consolidation". Journal of Applied Physics, 12 (2), 155-164. 1941.
[18] Terzaghi, K., R. B. Peck, and G. Mesri. Soil mechanics in engineering practice. John Wiley & Sons. 1996.
[19] Biot, M. A. "Thermoelasticity and Irreversible Thermodynamics". Journal of Applied Physics, 27, 1956.
[20] McTigue, D. "Thermoelastic response of fluid‐saturated porous rock". Journal of Geophysical Research: Solid Earth, 91 (B9), 9533-9542. 1986.
[21] Narasimhan, T., and P. Witherspoon. "Numerical model for saturated‐unsaturated flow in deformable porous media 1. Theory". Water Resources Research, 13 (3), 657-664. 1977.
[22] Sandhu, R. S., and E. L. Wilson. "Finite-element analysis of seepage in elastic media". Journal of the Engineering Mechanics Division, 95 (3), 641-652. 1969.
[23] Ghaboussi, J., and E. L. Wilson. "Flow of compressible fluid in porous elastic media". International Journal for Numerical Methods in Engineering, 5 (3), 419-442. 1973.
[24] Safai, N. M., and G. F. Pinder. "Vertical and horizontal land deformation in a desaturating porous medium". Advances in Water Resources, 2, 19-25. 1979.
[25] Noorishad, J., C. Tsang, and P. Witherspoon. "Coupled thermal‐hydraulic‐mechanical phenomena in saturated fractured porous rocks: Numerical approach". Journal of Geophysical Research: Solid Earth, 89 (B12), 10365-10373. 1984.
[26] Council, N. R. Disposition of high-level waste and spent nuclear fuel: The continuing societal and technical challenges. National Academies Press. 2001.
[27] Wang, X., H. Shao, J. Hesser, and O. Kolditz. "Analysis of the THM behaviour in a clay-based engineered barrier system (EBS): modelling of the HE-E experiment (Mont Terri URL)". Environmental Earth Sciences, 75 (20), 1350. 2016.
[28] Nguyen, T., A. Selvadurai, and G. Armand. "Modelling the FEBEX THM experiment using a state surface approach". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 639-651. 2005.
[29] Chijimatsu, M., T. Nguyen, L. Jing, J. De Jonge, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley, and Y. Sugita. "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 720-730. 2005.
[30] Chan, T., and F. Stanchell,(2008),DECOVALEX-THMC Project. TASK E. Implications of Glaciation and Coupled Thermohydromechanical Processes on Shield Flow System Evolution and Performance Assessment. Final Report.
[31] Kolditz, O., S. Bauer, L. Bilke, N. Böttcher, J.-O. Delfs, T. Fischer, U. J. Görke, T. Kalbacher, G. Kosakowski, and C. McDermott. "OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media". Environmental Earth Sciences, 67 (2), 589-599. 2012.
[32] Millard, A., A. Rejeb, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T. Nguyen, J. Rutqvist, M. Souley, and Y. Sugita. "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 2: effects of THM coupling in continuous and homogeneous rocks". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 731-744. 2005.
[33] Wang, W., G. Kosakowski, and O. Kolditz. "A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media". Computers & Geosciences, 35 (8), 1631-1641. 2009.
[34] Gallup, D. L. "Production engineering in geothermal technology: a review". Geothermics, 38 (3), 326-334. 2009.
[35] Jacquey, A. B., M. Cacace, G. Blöcher, N. Watanabe, E. Huenges, and M. Scheck-Wenderoth. "Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groß Schönebeck reservoir". Tectonophysics, 684, 119-130. 2016.
[36] Watanabe, N., W. Wang, C. I. McDermott, T. Taniguchi, and O. Kolditz. "Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media". Computational Mechanics, 45 (4), 263-280. 2010.
[37] Tortike, W., and S. Ali. "Reservoir simulation integrated with geomechanics". Journal of Canadian Petroleum Technology, 32 (05), 1993.
[38] Smith, J. D. "A Stochastic Evaluation of Geothermal Reservoir Potential for the Tuscarora Sandstone in Morgantown, West Virginia, USA". Geothermal Resources Council Transactions. 43, 902-925. 2019.
[39] Hyne, N. J. Nontechnical guide to petroleum geology, exploration, drilling & production. PennWell Books, LLC. 2019.
[40] Detournay, E. "Coupled thermo-hydro-mechanical processes in rock mechanics, with applications to the petroleum industry". 8th ISRM Congress, 1995.
[41] Ellsworth, W. L. "Injection-induced earthquakes". Science, 341 (6142), 2013.
[42] Holland, A. A. "Earthquakes triggered by hydraulic fracturing in south‐central Oklahoma". Bulletin of the Seismological Society of America, 103 (3), 1784-1792. 2013.
[43] Zoback, M. D., and H. P. Harjes. "Injection‐induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany". Journal of Geophysical Research: Solid Earth, 102 (B8), 18477-18491. 1997.
[44] Sun, X., H. Luo, and K. Soga. "A coupled thermal–hydraulic–mechanical–chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics". Journal of Zhejiang University-SCIENCE A, 19 (8), 600-623. 2018.
[45] Yin, S., B. F. Towler, M. B. Dusseault, and L. Rothenburg. "Fully coupled THMC modeling of wellbore stability with thermal and solute convection considered". Transport in Porous Media, 84 (3), 773-798. 2010.
[46] Freeman, T. T., R. J. Chalaturnyk, and I. I. Bogdanov. "Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization". COMSOL Conf, 9-11. 2008.
[47] Yin, S., M. B. Dusseault, and L. Rothenburg. "Thermal reservoir modeling in petroleum geomechanics". International Journal for Numerical and Analytical Methods in Geomechanics, 33 (4), 449-485. 2009.
[48] Olivier, J. G., K. Schure, and J. Peters. "Trends in global CO2 and total greenhouse gas emissions". PBL Netherlands Environmental Assessment Agency, 5, 2017.
[49] Fang, Y., B. N. Nguyen, K. Carroll, Z. Xu, S. B. Yabusaki, T. D. Scheibe, and A. Bonneville. "Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration". International Journal of Rock Mechanics and Mining Sciences, 62, 138-147. 2013.
[50] Vilarrasa, V., D. Bolster, S. Olivella, and J. Carrera. "Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers". International Journal of Greenhouse Gas Control, 4 (6), 910-919. 2010.
[51] Lemieux, J.-M. "The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources". Hydrogeology Journal, 19 (4), 757-778. 2011.
[52] Bohnhoff, M., M. Zoback, L. Chiaramonte, J. Gerst, and N. Gupta. "Seismic detection of CO2 leakage along monitoring wellbores". International Journal of Greenhouse Gas Control, 4 (4), 687-697. 2010.
[53] Zhang, R., X. Yin, P. H. Winterfeld, and Y.-S. Wu. "A fully coupled thermal-hydrological-mechanical-chemical model for CO2 geological sequestration". Journal of Natural Gas Science and Engineering, 28, 280-304. 2016.
[54] Fan, C., D. Elsworth, S. Li, L. Zhou, Z. Yang, and Y. Song. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery". Energy, 173, 1054-1077. 2019.
[55] Sibson, R. "Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief". Nature Physical Science, 243 (126), 66-68. 1973.
[56] Jeffreys, H. "On the mechanics of faulting". Geological Magazine, 79 (5), 291-295. 1942.
[57] Lachenbruch, A. H. "Frictional heating, fluid pressure, and the resistance to fault motion". Journal of Geophysical Research: Solid Earth, 85 (B11), 6097-6112. 1980.
[58] Mase, C. W., and L. Smith. "Pore-fluid pressures and frictional heating on a fault surface". Pure and Applied Geophysics, 122 (2), 583-607. 1984.
[59] Mase, C. W., and L. Smith. "Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault". Journal of Geophysical Research: Solid Earth, 92 (B7), 6249-6272. 1987.
[60] Noda, H., and T. Shimamoto. "Thermal pressurization and slip-weakening distance of a fault: An example of the Hanaore fault, southwest Japan". Bulletin of the Seismological Society of America, 95 (4), 1224-1233. 2005.
[61] Ujiie, K., H. Tanaka, T. Saito, A. Tsutsumi, J. J. Mori, J. Kameda, E. E. Brodsky, F. M. Chester, N. Eguchi, and S. Toczko. "Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments". Science, 342 (6163), 1211-1214. 2013.
[62] De Paola, N., T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto. "Fault lubrication and earthquake propagation in thermally unstable rocks". Geology, 39 (1), 35-38. 2011.
[63] Faulkner, D., T. Mitchell, J. Behnsen, T. Hirose, and T. Shimamoto. "Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs". Geophysical Research Letters, 38 (18), 2011.
[64] Badt, N. Z., T. E. Tullis, G. Hirth, and D. L. Goldsby. "Thermal pressurization weakening in laboratory experiments". Journal of Geophysical Research: Solid Earth, 125 (5), e2019JB018872. 2020.
[65] Rattez, H., I. Stefanou, and J. Sulem. "The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis". Journal of the Mechanics and Physics of Solids, 115, 54-76. 2018.
[66] Rattez, H., I. Stefanou, J. Sulem, M. Veveakis, and T. Poulet. "The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis". Journal of the Mechanics and Physics of Solids, 115, 1-29. 2018.
[67] Biot, M. A. "Mechanics of deformation and acoustic propagation in porous media". Journal of Applied Physics, 33 (4), 1482-1498. 1962.
[68] Nield, D. A., and A. Bejan. Convection in Porous Media. 2013.
[69] Mainguy, M., and P. Longuemare. "Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators". Oil & Gas Science and Technology, 57 (4), 355-367. 2002.
[70] Touhidi-Baghini, A. "Absolute permeability of McMurray formation oil sands at low confining stresses". Alberta University. Doctor of Philosophy. Fall 1998.
[71] Reid, R. C., J. M. Prausnitz, and B. E. Poling. The properties of gases and liquids. 1987.
[72] Chen, Y.-L., S.-R. Wang, J. Ni, R. Azzam, and T. M. Fernandez-Steeger. "An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics". Engineering Geology, 220, 234-242. 2017.
[73] Dwivedi, R., R. Goel, V. Prasad, and A. Sinha. "Thermo-mechanical properties of Indian and other granites". International Journal of Rock Mechanics and Mining Sciences, 45 (3), 303-315. 2008.
[74] Zio, E. Monte carlo simulation: The method. Springer. 2013.
[75] Mooney, C. Z. Monte carlo simulation. Sage. 1997.
[76] Dagan, G. "Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem". Water Resources Research, 18 (4), 813-833. 1982.
[77] Pebesma, E. J., and C. G. Wesseling. "Gstat: a program for geostatistical modelling, prediction and simulation". Computers & Geosciences, 24 (1), 17-31. 1998.
[78] Deutsch, C. V., and A. G. Journel. "Geostatistical software library and user’s guide". New York, 119 (147), 1992.
[79] Mantoglou, A. "Digital simulation of multivariate two-and three-dimensional stochastic processes with a spectral turning bands method". Mathematical Geology, 19 (2), 129-149. 1987.
[80] Tompson, A. F., R. Ababou, and L. W. Gelhar. "Implementation of the three‐dimensional turning bands random field generator". Water Resources Research, 25 (10), 2227-2243. 1989.
[81] Mantoglou, A., and J. L. Wilson. "The turning bands method for simulation of random fields using line generation by a spectral method". Water Resources Research, 18 (5), 1379-1394. 1982.
[82] Mejía, J. M., and I. Rodríguez‐Iturbe. "On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes". Water Resources Research, 10 (4), 705-711. 1974.
[83] Riihijarvi, J., P. Mahonen, M. Wellens, and M. Gordziel. "Characterization and modelling of spectrum for dynamic spectrum access with spatial statistics and random fields". 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-6. 2008.
[84] Li, D.-Q., T. Xiao, L.-M. Zhang, and Z.-J. Cao. "Stepwise covariance matrix decomposition for efficient simulation of multivariate large-scale three-dimensional random fields". Applied Mathematical Modelling, 68, 169-181. 2019.
[85] Gneiting, T., W. Kleiber, and M. Schlather. "Matérn cross-covariance functions for multivariate random fields". Journal of the American Statistical Association, 105 (491), 1167-1177. 2010.
[86] Hicks, P. J. "Unconditional sequential Gaussian simulation for 3-D flow in a heterogeneous core". Journal of Petroleum Science and Engineering, 16 (4), 209-219. 1996.
[87] Matheron, G. "The theory of regionalised variables and its applications". Les Cahiers du Centre de Morphologie Mathématique, 5, 212. 1971.
[88] Goovaerts, P. "Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall". Journal of Hydrology, 228 (1-2), 113-129. 2000.
[89] Haberlandt, U. "Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event". Journal of Hydrology, 332 (1-2), 144-157. 2007.
[90] Piotrowski, J., F. Bartels, A. Salski, and G. Schmidt. "Geostatistical regionalization of glacial aquitard thickness in northwestern Germany, based on fuzzy kriging". Mathematical Geology, 28 (4), 437-452. 1996.
[91] Gong, G., S. Mattevada, and S. E. O’Bryant. "Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas". Environmental Research, 130, 59-69. 2014.
[92] Cressie, N. "The origins of kriging". Mathematical Geology, 22 (3), 239-252. 1990.
[93] Chiles, J.-P., and P. Delfiner. Geostatistics: modeling spatial uncertainty. John Wiley & Sons. 2009.
[94] Deutsch, C. V., and A. G. Journel. "GSLIB Geostatistical Software Library and User’s Guide, second edition". New York. 1997.
[95] Gribov, A., and K. Krivoruchko. "Geostatistical mapping with continuous moving neighborhood". Mathematical Geology, 36 (2), 267-281. 2004.
[96] Wang, S., and K. Hsu. "Stochastic analysis of thermal-hydraulic-mechanical modeling for buffer material in nuclear waste repository". Poromechanics VI - Proceedings of the 6th Biot Conference on Poromechanics, 787-794. 2017.
[97] 台灣電力公司,(2009),我國用過核子燃料最終處置初步技術可行性評估報告SNFD2009報告。
[98] Cheng, A.-D. "Investigation of flow and soulte transport at the field scale through heterogeneous deformable porous media". Journal Hydrology, 540, 142-147. 2016.
[99] Pan, P.-Z., F. Yan, X.-T. Feng, and Z.-H. Wu. "Study on coupled thermo-hydro-mechanical processes in column bentonite test". Environmental Earth Sciences, 76 (17), 1-17. 2017.
[100] Garitte, B., H. Shao, X. Wang, T. Nguyen, Z. Li, J. Rutqvist, J. Birkholzer, W. Wang, O. Kolditz, and P. Pan. "Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory". Environmental Earth Sciences, 76 (2), 64. 2017.
[101] Cho, W.-J., and S. Kwon. "Estimation of the thermal properties for partially saturated granite". Engineering Geology, 115 (1-2), 132-138. 2010.
[102] Kuck, D. L. Structure of Computers and Computations. John Wiley & Sons, Inc., 1978.
[103] O′Regan, G. A brief history of computing. Springer Science & Business Media. 2008.
[104] Marr, D. T., F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton. "Hyper-Threading Technology Architecture and Microarchitecture". Intel Technology Journal, 6 (1), 2002.
[105] Gordon, M. I., W. Thies, and S. Amarasinghe. "Exploiting coarse-grained task, data, and pipeline parallelism in stream programs". ACM SIGPLAN Notices, 41 (11), 151-162. 2006.
[106] Schenk, O., K. Gärtner, W. Fichtner, and A. Stricker. "PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation". Future Generation Computer Systems, 18 (1), 69-78. 2001.
[107] Liu, J. W. "The multifrontal method for sparse matrix solution: Theory and practice". SIAM Review, 34 (1), 82-109. 1992.
[108] Amestoy, P. R., I. S. Duff, and J.-Y. L′excellent. "Multifrontal parallel distributed symmetric and unsymmetric solvers". Computer Methods in Applied Mechanics and Engineering, 184 (2-4), 501-520. 2000.
[109] Kulkarni, M., M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. "How much parallelism is there in irregular applications?". ACM Sigplan Notices, 44 (4), 3-14. 2009.
[110] COMSOL and Mulitthreading. (https://www.comsol.com/search/?t=1&subset=support_knowledge_base&s=multithreading).
[111] Pass Mark SOFTWARE-CPU Benchmarks. (https://www.cpubenchmark.net/).
[112] Prechelt, L. "An empirical comparison of c, c++, java, perl, python, rexx and tcl". IEEE Computer, 33 (10), 23-29. 2000.
[113] Lam, S. K., A. Pitrou, and S. Seibert. "Numba: A llvm-based python jit compiler". Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1-6. 2015.
[114] ipyparallel. (https://ipyparallel.readthedocs.io/en/latest/index.html).
指導教授 王士榮(Shih-Jung Wang) 審核日期 2021-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明