博碩士論文 108624002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:34.204.181.91
姓名 繆念澤(Nien-Tse Miao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 山崩潛感因子最適量測尺度探討-以石門水庫集水區山崩潛感分析為例
(Optimal measurement scale for selection of landslide susceptibility factor- A case study in the Shihmen Reservoir Catchment Area)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 良好的山崩潛感模型可提供適當的山崩災害預估,並作為工程選址、防災決策等重要依據,而選取高效度潛感因子則是建立良好山崩潛感模型的開始。山崩潛感因子多數是屬各種不同的地形因子,如坡度、坡向等。在同一數值地形模型(DTM)下,地形因子會因使用不同的量測尺度而有不同的輸出結果,並影響山崩潛感模型預估的正確率。然而,以往研究多採用固定量測尺度在單一DTM下產製地形因子,顯然其中仍有可改善的空間。本研究嘗試由高解析度DTM產製各個不同量測尺度下的各種地形因子,了解能產製高效度因子的最適量測尺度及供建立較佳山崩潛感模型。
為求得最適尺度因子,近年國外學者是以不同大小的移動視窗先對原始DTM做平滑化,再以3×3核心產製各尺度因子,並分別評估各尺度因子效度,以找出最適尺度因子作為模型建立依據。本研究除了以平滑化移動視窗法建立不同尺度之因子外,試圖再以大核心網格法建立不同尺度之因子以做為比較。
本研究選取石門水庫集水區為例,先建立艾利(2004)、馬莎(2005)、辛樂克(2008)、蘇力(2013)等四個颱風事件誘發山崩目錄,以解釋山崩分佈的成功率曲線法找出各個地形因子在各個山崩目錄下的最適測量尺度,並探討不同事件下最適測量尺度的異同。最後再利用各事件最適尺度因子建立每一個事件的山崩潛感模型。研究結果顯示,以最適尺度因子建立之潛感模型於成功率及預測率的表現皆有所提升。
摘要(英) A good landslide susceptibility model can provide appropriate prediction of the landslides which could serve as an important basis to select engineering site and decision making of the disaster prevention. Selecting high-effective susceptibility factors will be a beginning to build a good model. Landslide susceptibility factors are most belonging to topographic factors such as slope and aspect. In the same digital terrain model (DTM), different measurement scales will lead to different results of the output value of terrain data which influenced the accuracy rate of a landslide susceptibility model. However, most of the previous studies adopted a fixing measurement scale in single DTM to produce topographic factors, and left a big room for improving of it. This research attempts to produce various topographic factors under different measurement scales from a high-resolution DTM, and finds out a optimal measurement scale for a topographic factor, and at last using effective factors to build a good susceptibility model.
In order to obtain the optimal scale factor, some researchers have smoothed a DTM by the moving window smoothing method at different size at first, then used the 3×3 kernel to produce various scale factors, and then found the most effective ones for model building, recently. In this study, not only the moving window smoothing method was used to obtain an optimal scale factor, but also a large kernel method was used for comparison purposes.
This study selected Shimen Reservoir catchment area as a study area. Firstly, I built an event landslide inventory for the four typhoon events each, these included the Aere event of 2004, the Matsa event of 2005, the Sinlk event of 2008, and the Soulik event of 2013. These inventories were used to test the effectiveness of each factor in interpreting the landslide distribution by using the success rate curve method, and to find an optimal measurement scale for factor. Then I discussed the similarities and differences of the optimal measurement scale in different events. Last, I built an event-based landslide susceptibility model by utilizing the optimal scale factors and for each triggering event. The study indicated that the event-based susceptibility model built by the optimal scale factors have improved in the success rate and also the prediction rate of the model.
關鍵字(中) ★ 事件型山崩潛感模型
★ 最適量測尺度
★ 大核心網格法
★ 平滑化移動視窗法
關鍵字(英) ★ event-based landslide susceptibility model
★ optimal measurement scale
★ large kernel method
★ moving window smoothing method
論文目次 摘要 I
Abstract II
目錄 V
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 1
1.2.1 山崩潛感分析研究 1
1.2.2 羅吉斯迴歸於山崩潛感分析應用 2
1.2.3 事件型山崩潛感分析 4
1.2.4 篩選高效度因子方法 5
1.2.5 因子最適量測尺度探討 7
1.2.6 因子尺度劃分方法 9
1.3研究架構與流程 10
第二章 研究方法 14
2.1 羅吉斯迴歸 14
2.1.1 羅吉斯迴歸理論 14
2.2 成果驗證方法 17
2.2.1 分類誤差矩陣表 18
2.2.2 成功率曲線與預測率曲線 19
2.3 地形因子尺度劃分方法 21
2.3.1 平滑化移動視窗法 21
2.3.2 大核心網格法 23
第三章 研究區域概述 26
3.1 研究區地理位置與地形概述 26
3.2 研究區氣候與水文概述 27
3.3 研究區地層概述 28
第四章 資料蒐集與處理 31
4.1 地形資料及雨量資料與衛星影像 31
4.2 事件誘發山崩目錄 32
4.2.1 山崩目錄判釋與檢核 32
4.3 雨量因子處理 39
4.3.1 雨量資料檢核與處理 39
4.3.2 雨量分布空間推估 39
4.4 山崩因子處理 45
4.5 因子篩選 54
4.5.1 山崩與非山崩次數分佈圖 55
4.5.2 崩壞比圖 55
4.5.4 P-P 機率圖 55
4.5.5 相關係數 55
4.5.6 最適尺度因子選取 56
第五章 事件型山崩潛感分析 72
5.1 分析樣本選取 72
5.2 山崩潛感分析模型建立 72
5.3 山崩潛感分析結果 73
5.3.1 艾利颱風事件(2004) 73
5.3.2 馬莎颱風事件(2005) 77
5.3.3 辛樂克颱風事件(2008) 81
5.3.4 蘇力颱風事件(2013) 85
第六章 討論 88
6.1 地形因子最適量測尺度探討 88
6.2 使用最適量測尺度因子能否優化山崩潛感模型 91
6.3 使用大核心網格法及平滑化移動視窗法的方法優劣 94
第七章 結論與建議 96
7.1 結論 96
7.2 建議 97
參考文獻 99
附錄A 山崩潛感模型因子統計圖 106
參考文獻 Agresti, A., (2002) Categorical data analysis (2nd ed.), New York: John Wiley, 710p.
Atkinson, P. M., Massari, R., (1998) Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Computers & Geosciences, 24, 373-385.
Burton, A., Bathurst, J. C., (1998) Physically based modeling of shallow landslide sediment yield at a catchment scale, Environmental Geology, 35, 89-99.
Carrara, A., Merenda, L., (1974) Methodology for an inventory of slope instability events in Calabria (Southern Italy), Geologia Applicata e Idrogeologica, 9, 237-255.
Chang, K. T., Chiang, S. H., Lei, F., (2008) Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 33, 1261-1271.
Chang, K. T., Merghadi, A., Yunus, AP., Pham, BT., Dou, J., (2019) Evaluating scale effects of topographic variables in landslide susceptibility models using GIS- based machine learning techniques, Scientific Reports, 9:12296, 1-12.
Chen, Z., Wang, J., (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada, Natural Hazards, 42:75–89.
Chung, C. F., Fabbri, A. G., (1999) Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Seneing, 65, 12, 1389-1399.
Chung, C. F., Fabbri, A. G., (2003) Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, 30, 451-472.
Claessens, L., Schoorl, J.M., Veldkamp, A., (2007) Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for Northern New Zealand, Geomorphology, 87, 16-27.
Dai, F. C. Lee, C. F., (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228.
Feinberg, S., (1985) The analysis of cross-classified categorical data (2nd ed.), Cambridge, MA: MIT Press, 198p.
Garosi, Y., Sheklabadi, M., Pourghasemi, H.R., Besalatpour, A.A., Conoscenti, C., Van Oost, K., (2018) Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping, Geoderma, 330, 65-78.
Goodchild, M.F., (2001) Metrics of scale in remote sensing and GIS, International Journal of Applied Earth Observation and Geoinformation, 3, 114-120.
Hansen, A., (1984) Landslide hazard analysis, in slope instability (Brunsden, D. and Prior, D.B. eds.), John Wiley and Sons, New York, 523-602.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181-216.
Hemasinghe, H., Rangali, R.S.S., Deshapriya, N.L., Samarakoon, L., (2018) Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka), Procedia Engineering, 212, 1046–1053.
Ives, J. D., Bovis, M. J., (1978) Natural hazards maps for land-use planning, San Juan mountains, Colorado, U.S.A, Arctic and Alpine Research, 10(2), 185-212.
Ives, J. D., Messerli, B., (1981) Mountain hazards mapping in Nepal: introduction to an applied mountain research project, Mountain Research and Development, 1(3-4), 223-230.
Iwahashi, J., Kamiya, I., Yamagishi, H., (2012) High-resolution DEMs in the study of rainfall- and earthquake-induced landslides: use of a variable window size method in digital terrain analysis, Geomorphology, 153-154, 29-38.
Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P., (2012) Landslide susceptibility zonation (LSZ) mapping – a review, Journal of South Asia Disaster Studies, 2(1), 81-105.
Kienholz, H., (1978) Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000, Arctic and Alpine Research, 10, 169-184.
Komar, P. D., (1999) Coastal change-scales of processes and dimensions of problems, in Nicholas C. K., (Ed.), Coastal Sediments, 1-17.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008a) Statistical approach to earthquake-induced landslide susceptibility, Engineering Geology, 100(1-2), 43-58.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008b) Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960.
Lee, C. T., (2014b) Multi-stage statistical landslide hazard analysis: earthquake-induced landslides, Landslide Science for a Safer Geoenvironment, 3, 205-211.
Lee, C. T., Chung, C. C., (2017) Common patterns among different landslide susceptibility models of the same region, Workshop on World Landslide Forum, 937-942.
Lillesand, T. M., Kiefer, R. W., (2000) Remote sensing and image interpretation,Wiley & Sons, New York, 724p.
Long, J. S., (1997) Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297p.
Malgot, J., Mahr, T., (1979) Engineering geological mapping of the west Carpathian landslide areas, Bulletin of the International Association of Engineering Geology, 19, 113-121.
Ohlmacher, G. C., Davis, J. C., (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69, 331-343.
Paudel, U., Oguchi, T., Hayakawa, Y., (2016) Multi-resolution landslide susceptibility analysis using a DEM and random forest, International Journal of Geosciences, 7, 5-18.
Pham, B.T., Bui, D.T., Prakash, I., Nguyen, L.H., Dholakia, M.B., (2017) A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS, Environmental Earth Sciences, 76, 10, 1-15.
Razak, A, K., Santangelo, M., Westen, V, J, C., Straatsma, W, M., Jong, D, M, S., (2013) Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment, Geomorphology, 190, 112-125.
Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., (2018) A review of statistically based landslide susceptibility models, Earth Science Review, 180, 60-91.
Rupke, J., Cammeraat, E., Seijmonsbergen, A. C., van Westen, C. J., (1988) Engineering geomorphology of the Widentobel catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, 26, 33-68.
Schlögel, R., Marchesini, I., Alvioli, M., Reichenbach, P., Rossi, M., Malet, J.-P., (2018) Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models, Geomorphology, 301, 10-20.
Sîrbu, F., Drăguț, L., Oguchi, T., Hayakawa, Y., Micu, M., (2019) Scaling land-surface variables for landslide detection, Progress in Earth and Planetary Science, 6, 44:1-13.
Sørensen, R., Seibert, J., (2007) Effects of DEM resolution on the calculation of topographical indices: TWI and its components, Journal of Hydrology 347, 79–89.
Stevenson, P. C., (1977) An empirical method for the evaluation of relative landslide risk, Bulletin of the International Association of Engineering Geology, 16, 69-72.
Sulaiman, W.N.A., Rosli, M.H., Abu Samah, M.A., Kamarudin, M.K.A., (2017) Landslide susceptibility mapping: effect of spatial resolution towards the prediction of landslide prone area in a tropical catchment, Chiang Mai Journal of Science, 44, 494-507.
Wang, T., Liu, J.M, Shi, J.S., Wu, S.R., (2017) The influence of DEM resolution on seismic landslide hazard assessment based upon the Newmark displacement method: a case study in the loess area of Tianshui, China, Environmental Earth Sciences, 76(17), 604.
Wang, L.J., Guo, M., Sawada, K., Lin, J., Zhang, J., (2016) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network, Geosciences Journal, 20, 1, 117-136.
Wei, L. W., Huang, C. M., Lee, C. T., Chi, C. C., Chiu, C. L., (2018) Adopting the I3–R24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides, Natural Hazards and Earth System Sciences, 18, 6, 1717-1733.
Wilson, J.P., Gallant, J.C., (2000) Terrain analysis, principles and applications, John Wiley & Sons, Inc., 479p.
Zhao, Y., Wang, R., Jiang, Y., Liu, H., Wei, Z., (2019) GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China, Engineering Geology, 259, 105147.
經濟部中央地質調查所 (2011) 易淹水地區上游集水區地質調查與資料庫建置‒集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所,共700頁。
林昭遠、吳瑞鵬、林文賜 (2001) 921 震災塌地植生復育監測與評估,中華水土保持學報,32-1,59-66。
林彥享 (2003) 運用類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,89頁。
林淑媛 (2003) 地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,140頁。
林淑惠 (2010) 以超曲面迴歸克利金進行降雨量空間推估,國立中央大學應用地質研究所碩士論文,162頁。
李錫堤、潘國樑、林銘郎 (2003) 山崩調查與危險度評估–山崩潛感分析之研究(1/3),經濟部中央地質調查所報告第92-11號,共154頁。
李錫堤,黃健政 (2005) 區域性山坡穩定分析之回顧與展望。地工技術,第104期(民國94年6月),第33-52頁。
李錫堤、潘國樑、林銘郎、董家鈞 (2007) 山崩土石流調查及潛感分析研究–大漢溪流域、大甲溪流域及濁水溪流域,集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所委辦計畫編號095-B-08-12-2-001-01-0。
李錫堤,費立沅,李錦發,林銘郎,董家鈞,張瓊文 (2008) 石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文光碟,1-10。
洪政耀 (2012) 區域災害系統評估不同空間尺度之災害風險研究 - 以臺灣臺東縣坡地環境為例,國立臺灣師範大學地理學系博士論文,251頁。
符智傑 (2016) 曾文水庫集水區事件型降雨誘發山崩潛感及山崩機率預測模式,國立中央大學應用地質研究所碩士論文,257頁。
黃誌川、徐美玲 (2001) 以不同網格數值地形解析渡河計算方法析取坡度之比較,中華水土保持學報,32(3),第199-205頁。
張弼超 (2005) 運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,134 頁。
蔡雨澄 (2012) 極端降雨下之山崩潛感分析-以莫拉克颱風誘發山崩為例,國立中央大學應用地質研究所碩士論文,126 頁。
鐘意晴 (2009) 區域性山崩潛感分析方法探討-以石門水庫集水區為例,國立中央大學地球物理研究所碩士論文,172 頁。
岩橋純子.神谷泉.山岸宏光 (2009) LiDAR DEMを用いた表層崩壊のアセスメントに適する勾配と凹凸度の計算範囲の推定, 地形, 第30巻第1号, 15-27頁.
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2021-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明