參考文獻 |
Agresti, A., (2002) Categorical data analysis (2nd ed.), New York: John Wiley, 710p.
Atkinson, P. M., Massari, R., (1998) Generalized linear modelling of susceptibility to landsliding in the central Apennines, Italy, Computers & Geosciences, 24, 373-385.
Burton, A., Bathurst, J. C., (1998) Physically based modeling of shallow landslide sediment yield at a catchment scale, Environmental Geology, 35, 89-99.
Carrara, A., Merenda, L., (1974) Methodology for an inventory of slope instability events in Calabria (Southern Italy), Geologia Applicata e Idrogeologica, 9, 237-255.
Chang, K. T., Chiang, S. H., Lei, F., (2008) Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions, Earth Surface Processes and Landforms, 33, 1261-1271.
Chang, K. T., Merghadi, A., Yunus, AP., Pham, BT., Dou, J., (2019) Evaluating scale effects of topographic variables in landslide susceptibility models using GIS- based machine learning techniques, Scientific Reports, 9:12296, 1-12.
Chen, Z., Wang, J., (2007) Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada, Natural Hazards, 42:75–89.
Chung, C. F., Fabbri, A. G., (1999) Probabilistic prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Seneing, 65, 12, 1389-1399.
Chung, C. F., Fabbri, A. G., (2003) Validation of spatial prediction models for landslide hazard mapping, Natural Hazards, 30, 451-472.
Claessens, L., Schoorl, J.M., Veldkamp, A., (2007) Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds: an application for Northern New Zealand, Geomorphology, 87, 16-27.
Dai, F. C. Lee, C. F., (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213-228.
Feinberg, S., (1985) The analysis of cross-classified categorical data (2nd ed.), Cambridge, MA: MIT Press, 198p.
Garosi, Y., Sheklabadi, M., Pourghasemi, H.R., Besalatpour, A.A., Conoscenti, C., Van Oost, K., (2018) Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping, Geoderma, 330, 65-78.
Goodchild, M.F., (2001) Metrics of scale in remote sensing and GIS, International Journal of Applied Earth Observation and Geoinformation, 3, 114-120.
Hansen, A., (1984) Landslide hazard analysis, in slope instability (Brunsden, D. and Prior, D.B. eds.), John Wiley and Sons, New York, 523-602.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181-216.
Hemasinghe, H., Rangali, R.S.S., Deshapriya, N.L., Samarakoon, L., (2018) Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka), Procedia Engineering, 212, 1046–1053.
Ives, J. D., Bovis, M. J., (1978) Natural hazards maps for land-use planning, San Juan mountains, Colorado, U.S.A, Arctic and Alpine Research, 10(2), 185-212.
Ives, J. D., Messerli, B., (1981) Mountain hazards mapping in Nepal: introduction to an applied mountain research project, Mountain Research and Development, 1(3-4), 223-230.
Iwahashi, J., Kamiya, I., Yamagishi, H., (2012) High-resolution DEMs in the study of rainfall- and earthquake-induced landslides: use of a variable window size method in digital terrain analysis, Geomorphology, 153-154, 29-38.
Kanungo, D. P., Arora, M. K., Sarkar, S., Gupta, R. P., (2012) Landslide susceptibility zonation (LSZ) mapping – a review, Journal of South Asia Disaster Studies, 2(1), 81-105.
Kienholz, H., (1978) Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1:10,000, Arctic and Alpine Research, 10, 169-184.
Komar, P. D., (1999) Coastal change-scales of processes and dimensions of problems, in Nicholas C. K., (Ed.), Coastal Sediments, 1-17.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008a) Statistical approach to earthquake-induced landslide susceptibility, Engineering Geology, 100(1-2), 43-58.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., Dong, J. J., (2008b) Statistical approach to storm event-induced landslide susceptibility, Natural Hazard and Earth System Sciences, 8, 941-960.
Lee, C. T., (2014b) Multi-stage statistical landslide hazard analysis: earthquake-induced landslides, Landslide Science for a Safer Geoenvironment, 3, 205-211.
Lee, C. T., Chung, C. C., (2017) Common patterns among different landslide susceptibility models of the same region, Workshop on World Landslide Forum, 937-942.
Lillesand, T. M., Kiefer, R. W., (2000) Remote sensing and image interpretation,Wiley & Sons, New York, 724p.
Long, J. S., (1997) Regression models for categorical and limited dependent variables, Thousand Oaks, California: Sage Publications, 297p.
Malgot, J., Mahr, T., (1979) Engineering geological mapping of the west Carpathian landslide areas, Bulletin of the International Association of Engineering Geology, 19, 113-121.
Ohlmacher, G. C., Davis, J. C., (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA, Engineering Geology, 69, 331-343.
Paudel, U., Oguchi, T., Hayakawa, Y., (2016) Multi-resolution landslide susceptibility analysis using a DEM and random forest, International Journal of Geosciences, 7, 5-18.
Pham, B.T., Bui, D.T., Prakash, I., Nguyen, L.H., Dholakia, M.B., (2017) A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS, Environmental Earth Sciences, 76, 10, 1-15.
Razak, A, K., Santangelo, M., Westen, V, J, C., Straatsma, W, M., Jong, D, M, S., (2013) Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment, Geomorphology, 190, 112-125.
Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., Guzzetti, F., (2018) A review of statistically based landslide susceptibility models, Earth Science Review, 180, 60-91.
Rupke, J., Cammeraat, E., Seijmonsbergen, A. C., van Westen, C. J., (1988) Engineering geomorphology of the Widentobel catchment, Appenzell and Sankt Gallen, Switzerland: a geomorphological inventory system applied to geotechnical appraisal of slope stability, Engineering Geology, 26, 33-68.
Schlögel, R., Marchesini, I., Alvioli, M., Reichenbach, P., Rossi, M., Malet, J.-P., (2018) Optimizing landslide susceptibility zonation: effects of DEM spatial resolution and slope unit delineation on logistic regression models, Geomorphology, 301, 10-20.
Sîrbu, F., Drăguț, L., Oguchi, T., Hayakawa, Y., Micu, M., (2019) Scaling land-surface variables for landslide detection, Progress in Earth and Planetary Science, 6, 44:1-13.
Sørensen, R., Seibert, J., (2007) Effects of DEM resolution on the calculation of topographical indices: TWI and its components, Journal of Hydrology 347, 79–89.
Stevenson, P. C., (1977) An empirical method for the evaluation of relative landslide risk, Bulletin of the International Association of Engineering Geology, 16, 69-72.
Sulaiman, W.N.A., Rosli, M.H., Abu Samah, M.A., Kamarudin, M.K.A., (2017) Landslide susceptibility mapping: effect of spatial resolution towards the prediction of landslide prone area in a tropical catchment, Chiang Mai Journal of Science, 44, 494-507.
Wang, T., Liu, J.M, Shi, J.S., Wu, S.R., (2017) The influence of DEM resolution on seismic landslide hazard assessment based upon the Newmark displacement method: a case study in the loess area of Tianshui, China, Environmental Earth Sciences, 76(17), 604.
Wang, L.J., Guo, M., Sawada, K., Lin, J., Zhang, J., (2016) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network, Geosciences Journal, 20, 1, 117-136.
Wei, L. W., Huang, C. M., Lee, C. T., Chi, C. C., Chiu, C. L., (2018) Adopting the I3–R24 rainfall index and landslide susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides, Natural Hazards and Earth System Sciences, 18, 6, 1717-1733.
Wilson, J.P., Gallant, J.C., (2000) Terrain analysis, principles and applications, John Wiley & Sons, Inc., 479p.
Zhao, Y., Wang, R., Jiang, Y., Liu, H., Wei, Z., (2019) GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China, Engineering Geology, 259, 105147.
經濟部中央地質調查所 (2011) 易淹水地區上游集水區地質調查與資料庫建置‒集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所,共700頁。
林昭遠、吳瑞鵬、林文賜 (2001) 921 震災塌地植生復育監測與評估,中華水土保持學報,32-1,59-66。
林彥享 (2003) 運用類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文,89頁。
林淑媛 (2003) 地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,140頁。
林淑惠 (2010) 以超曲面迴歸克利金進行降雨量空間推估,國立中央大學應用地質研究所碩士論文,162頁。
李錫堤、潘國樑、林銘郎 (2003) 山崩調查與危險度評估–山崩潛感分析之研究(1/3),經濟部中央地質調查所報告第92-11號,共154頁。
李錫堤,黃健政 (2005) 區域性山坡穩定分析之回顧與展望。地工技術,第104期(民國94年6月),第33-52頁。
李錫堤、潘國樑、林銘郎、董家鈞 (2007) 山崩土石流調查及潛感分析研究–大漢溪流域、大甲溪流域及濁水溪流域,集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所委辦計畫編號095-B-08-12-2-001-01-0。
李錫堤,費立沅,李錦發,林銘郎,董家鈞,張瓊文 (2008) 石門水庫集水區的山崩與土石流潛感分析,第六屆海峽兩岸山地災害與環境保育學術研討會論文光碟,1-10。
洪政耀 (2012) 區域災害系統評估不同空間尺度之災害風險研究 - 以臺灣臺東縣坡地環境為例,國立臺灣師範大學地理學系博士論文,251頁。
符智傑 (2016) 曾文水庫集水區事件型降雨誘發山崩潛感及山崩機率預測模式,國立中央大學應用地質研究所碩士論文,257頁。
黃誌川、徐美玲 (2001) 以不同網格數值地形解析渡河計算方法析取坡度之比較,中華水土保持學報,32(3),第199-205頁。
張弼超 (2005) 運用羅吉斯迴歸法進行山崩潛感分析-以國姓地區為例,國立中央大學應用地質研究所碩士論文,134 頁。
蔡雨澄 (2012) 極端降雨下之山崩潛感分析-以莫拉克颱風誘發山崩為例,國立中央大學應用地質研究所碩士論文,126 頁。
鐘意晴 (2009) 區域性山崩潛感分析方法探討-以石門水庫集水區為例,國立中央大學地球物理研究所碩士論文,172 頁。
岩橋純子.神谷泉.山岸宏光 (2009) LiDAR DEMを用いた表層崩壊のアセスメントに適する勾配と凹凸度の計算範囲の推定, 地形, 第30巻第1号, 15-27頁. |