博碩士論文 108624003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.138.134.107
姓名 石智偉(Jhih-Wei Shih)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性
(Analyzing the Holocene activity of the Lunhou fault and Kouhsiaoli fault in southwestern Taiwan based on the Tsengwen River terraces)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 崙後斷層與其東側的口宵里斷層位於台灣西南部的台南嘉義一帶,兩者為比鄰的南北走向逆移斷層,前者向東傾,後者向西傾。該區的InSAR影像解析結果顯示跨兩斷層每年約有20毫米的垂直變位量,因此本研究利用流貫本區的曾文溪,其沿岸的階地對比分析,探討崙後斷層及口宵里斷層的構造關係及活動性對此抬升量的可能貢獻。進行的步驟方法有兩項,其一藉由高精度數值模型進行地形判釋,再輔以野外調查及14C定年相互對比繪製河階圖,其二是透過地質資料,繪製出地質剖面,將兩者結合分析與解釋,藉此瞭解兩條斷層之關聯與活動特性。本研究於野外調查時,藉由全站儀和VBS-RTK與無人機(DJI Mavic 2 pro)測量河階階面、基岩頂部的侵蝕面、採樣樣本之海拔高程以及所獲得之14C定年結果及前人定年資料分析將河階階面依河拔高程的高低分成十一階,由老至年輕分別為T0 (15-18ka)、T1a (8 ka)、T1b、T2a、T2b、T3 (3-4 ka)、T4a、T4b (2 ka)、T4c、T4d、T5,由西向東至烏山頭背斜河流階地地表變形逐漸抬升,並且將測量到的高程資料與定年資料進行下切速率的計算,可見研究區最西邊與最東邊之T3階地其下切速率相近,這代表著兩側的T3階地沉積環境相當,且根據河階變形判釋與下切速率的分布,視為未變形區,崙後斷層上盤T4b階地年代為1998 -1878 cal BP,下盤T4b階地年代為1867-1615 cal BP,且階地高程相似,故推斷崙後斷層可能在2千年以來無活動跡象。口宵里斷層上盤新社T3階地(年代為3820-3584 cal BP),與下盤劉陳灣T3階地(年代為4219-3926 cal BP),階地高程差約30公尺,且於劉陳灣露頭可見口宵里斷層切穿上覆河階沉積物,於下盤處河階沉積物內由西向東採集到四個樣本,分別為近口宵里斷層基岩侵蝕面的15256-14854 cal BP和18480-17887 cal BP,以及距口宵里斷層東側約260公尺處上部細粒料內採集到的8976-8595 cal BP與3212-3005 cal BP,造成上述四個樣本皆沉積於同一處河階的原因,可能是下盤因口宵里斷層的活動導致基岩抬升,致使曾文溪流向改變由西向東遷,或是此處沉積相當穩定,河階不斷地沉積、侵蝕於同一處,致使底部較頂層的樣本老。根據定年樣本以及河階的基岩侵蝕面之河拔高,是有利於計算下切速率,計算下切速率後可以觀察到距口宵里斷層西側約6公里的頭社T3河階其下切速率為6.0-8.4 mm/yr與口宵里斷層東側的劉陳灣T3河階其下切速率為3.8-5.3 mm/yr,兩者的下切速率相當,但於兩者之間的新社T3河階下切速率卻是15.0-21.0 mm/yr,下切速率快於前兩者許多,主要原因是新社的T3河階應該是受構造活動影響。根據以上野外調查以及下切速率對比以及定年結果的解釋,都說明口宵里斷層至少於3-4千年內有活動跡象,這也說明著口宵里斷層可能為第一類活動斷層。綜合以上所述得已知曉兩條斷層的活動性,因此本研究欲探討兩斷層之間的關係以及該區的變形貢獻,故將繪製完成之河階階面的座標投影於N75°W的剖面上,並結合Lu et al.的InSAR資料(2020)分析研究區之地表變形與垂直變位量,可發現河階分布呈不對稱的背斜形(antiform)且口宵里斷層西側至少6公里內皆有向上抬升的跡象,為解釋構造對於該區的影響,本研究提出兩種可能的解釋,其一為崙後斷層因淺部傾角過高而鎖住無法繼續活動,形成口宵里背衝斷層向東逆衝;另一為緊鄰崙後斷層西側的烏山頭背斜因曲滑褶皺作用持續地增長,然而背斜於地表下一、兩公里的範圍,兩翼過度緊密而鎖住,致使層間滑動面於背斜西翼的反曲點,順勢往上擴展截切背斜東翼及崙後斷層並切穿地表河階沉積物,形成向東逆衝的口宵里斷層。由本研究的河階剖面,可觀察到口宵里斷層以西,跨崙後斷層及烏山頭背斜,約六公里的範圍,相對口宵里斷層東側的下盤區,有明顯的抬升,呈現背斜形的變位,且最大抬升量約在烏山頭背斜軸跡的位置,故本研究認為口宵里斷層為一逆移斷層,截切烏山頭背斜與崙後斷層,烏山頭背斜的增長及口宵里斷層活動使得口宵里斷層以西的地表不斷抬升,故根據野外調查與河階對比及河流下切速率,證明口宵里斷層為第一類活動斷層,而斷層的活動性,於烏山頭背斜西側新社T3階地的相對抬升速率為13.7-15.7 mm/yr,且新社和劉陳灣的T3之相對抬升速率差異,搭配劉陳灣的口宵里斷層露頭的斷層傾角42°,可推得最大的斷層滑移速率為20.0-23.0 mm/yr。
摘要(英) The Lunhou fault (LHF) dips to the east and Kouhsiaoli fault (KSLF), which is to the east from LHF, dips to the west. These two faults are striking north-south and are located in southwestern Taiwan through Chiayi and Tainan area. InSAR Images show 20 mm/yr of uplift across these two faults. Therefore, this study aims to reveal if LHF and KSLF have any contribution to this vertical component, based on the river terraces along the Tsengwen River. Firstly, we used a 5m DEM and a Lidar DTM for terrain interpretation and terrace mapping. Then, we conducted field investigations to measure the elevation of terrace surface, terrace strath and dated samples using total station, VBS-RTK and UAV, and to collect samples for 14C dating to complete the terrace correlation. Secondly, we draw a geological profile based on geological data. We integrated these two approaches to better analyze and explain the structural relationship and activity of these two faults. Eleven levels of terraces, which are T0 (15-18 ka), T1 (8 ka), T1b, T2a, T2b, T3 (3-4 ka), T4a, T4b (2 ka), T4c, T4d and T5 from oldest to youngest, have been classified according to their elevation difference from the modern river, and radiocarbon dating. In the field, the LHF dip angle is high and the KSLF dip angle is 42°. Combining 14C ages from this study and previous studies, we found that the age of the terrace T4b on the hanging wall of LHF is 1998-1878 cal BP and the age of the terrace T4b on the footwall is 1867-1615 cal BP. Additionally, the strath elevation of T4b on both sides of LHF are similar. This indicates that LHF has been inactive since 2 thousand years. The age of the terrace T3 on the hanging wall of KSLF is 3-4 ka, which is similar to the footwall, but the elevation difference of the strath between them is 30 m. These results suggest that KSLF is active. The activity of the KSLF is further demonstrated by our observation of the Liuchenwan outcrop, where the KSLF cut through the river deposit. There, four 14C samples were collected from west to east in the river terrace sediments on the footwall of the KSLF. Ages of 15256-14854 cal BP and 18480-17887 cal BP were obtained near the strath, and 8976-8595 cal BP and 3212-3005 cal BP were obtained in the upper fine-grain part of the terrace deposits at the east side of fault at about 260 m distance. These four samples are all deposited in the same terrace sequence and we have two explanations for that. First, the fault activity led the bedrock to uplift, which caused the path of the Tsengwen River to migrate towards the east. Second, the riverbed here was quite stable, with limited incision and deposition between 18 ka and 3ka. The terrace and age dataset were also used to calculate river incision rates. For the terrace T3, we observed fairly similar incision rates of 6.0-8.4 mm/yr 6 km west of KSLF and of 3.8-5.3 mm/yr 500 m east of KSLF. But the terrace T3 located 2.2 km west of KSLF shows a faster incision rate of 15.0-21.0 mm/yr that indicates that this is area is affected by tectonic activity. Therefore, our observations indicate that the KSLF has been active since at least 3-4 ka, and we can classify it as a type I active fault. In a next step, we project the coordinates of the river terrace surface on the N75°W section and analyze the study area in combination with existing InSAR data. From our terrace deformation profile the distribution of river terraces exhibits an asymmetrical antiformal geometry, and there are signs of uplift within at least 6 km to the west of the KSLF. This study proposes two possible explanations. First, the LHF is locked because of the high dip angle at its shallow part and hence it cannot continue to move, forming the KSLF back thrust toward the east; Second, Wushantou anticline (WSTA) is adjacent to the west of the LHF. However, the anticline is 1 or 2 km below the surface, and the two limbs are too tight and locked, so that the interlayer sliding is at the flexural point of the anticline western limb. The KSLF expanded and cut through the LHF and terrace deposits. From the terrace section of this study, it can be clearly observed that the KSLF hanging wall uplifts relative to the footwall with a range of about 6 km across WSTA and LHF. To summarize, this study revealed that the KSLF is a reverse fault that cut through the WSTA and the LHF. The WSTA growth and KSLF activity generate surface uplift to the west of KSLF. According to the correlation of river terraces and the incision rate, the relative uplift rate between terrace T3 near the WSTA and terrace T3 east of KSLF is 13.7-15.7 mm/yr. Using the relative uplift rate of terrace T3 across the KSLF, the fault dip angle (42°) of the KSLF outcropping in Liuchenwan, we inferred the maximum fault slip rate to be 20.0-23.0 mm/yr.
關鍵字(中) ★ 崙後斷層
★ 口宵里斷層
★ 烏山頭背斜
★ 河階
★ 曾文溪
關鍵字(英) ★ Lunhou fault
★ Kouhsiaoli fault
★ Wushantou anticline
★ terrace
★ Tsengwen River
論文目次 中文摘要 i
Abstract iii
目錄 vi
圖目錄 viii
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 5
第二章 區域概況 7
2-1地形概況 7
2-2地質概況 10
2-2-1地層 10
2-2-2地質構造 13
第三章 前人文獻回顧 19
3-1研究區的斷層活動性及構造特性 19
3-1-1大地測量 19
3-1-2崙後斷層與口宵里斷層的構造特性與活動性 27
3-2曾文溪地區河階相關研究 29
第四章 研究方法 37
4-1野外調查 37
4-2河階判釋與分析 41
4-2-1河階圈繪 41
4-2-2河階對比 41
4-2-3階地地表、基岩頂部侵蝕面、及採樣樣本 43
4-2-4碳十四定年 44
4-2-5河階分析 46
第五章 研究結果 48
5-1野外調查結果 48
5-1-1烏山頭背斜 50
5-1-2崙後斷層南段 53
5-1-3口宵里斷層 55
5-2階地調查與分析結果 64
5-2-1階地沉積物 64
5-2-2 碳十四定年結果 74
5-3階地對比、分布與分析 84
第六章 討論 95
6-1構造活動性 95
6-1-1階地變形推演構造運動 95
6-1-2下切速率比對 100
6-1-3長期滑移速率 100
6-2烏山頭背斜、崙後斷層與口宵里斷層之地下結構 104
第七章 結論 108
參考文獻 110
附錄A: 野外露頭空照3D建模 117
附錄B:劉陳灣河階空照 118
附錄C:標本定年年代校正結果 119
參考文獻 中國石油公司,「臺南地質圖,比例尺十萬分之一」,中國石油公司臺灣油礦探勘總處,1989。
鳥居敬造,「台南州新化油田調查報告」,台灣總督府殖產局,609號,29頁,1932。
何信昌、謝凱旋、高銘健、陳華玟,「新化地質圖幅及說明書,比例尺五萬分之一」,經濟部中央地質調查所,2005。
何春蓀,「臺灣地質概論—臺灣地質圖說明書」,經濟部中央地質調查所,共 164 頁,1986。
紀文榮、黃秀美,「台南縣九層林背協之超微體生物地層」,探採彙報,第5期,39-56頁,1982。
紀文榮,「台南泥岩區之超微體生物地層與對比研究」,石油,17卷,1期,47-65頁,1982。
紀文榮,「台南泥岩區之超微體生物地層與對比研究」,石油,17卷,1期,45-60頁,1978。
林朝棨,「臺灣地形,台灣省通志稿」,臺灣文獻委員會出版,第 1 卷,第 1 冊,共424頁,1957。
林朝棨,「土地志˙地理篇˙第一冊」,台灣省文獻委員會出版,台灣通志稿,卷一,第274-277頁,1957。
林啟文、張徽正、盧詩丁、石同生、黃文正,「台灣活動斷層概論五十萬分之一台灣活動斷層分布圖說明書」,經濟部中央地質調查所特刊,第二版,第13號,共122頁,2000。
景國恩、胡植慶、陳宏宇、張午龍、鄭凱謙、莊昀叡,「斷層活動性觀測研究第四階段-地表變形觀測資料處理分析與斷層模型反演評估」,經濟部中央地質調查所,共315頁,2018。
謝凱旋,「台南菜寮地區更新世地層層序研究」,經濟部中央地質調查所八十年度研究發展專題報告,第1-35頁,1991。
謝承恩、范書睿、林彥廷、黃文正和羅偉,「無人飛行載具搭載數 位相機於地質構造判釋之應用」,Journal of Photogrammetry and Remote Sensing,21,4,257-269 頁,2016。
吳榮章,「台南縣龜丹溪剖面之生物地層及其沉積環境」,探採彙報,第5期,地33-51頁,1982。
陳文山,「地震地質調查及活動斷層資料庫建置計畫-崙後斷層條帶地質圖」,經濟部中央地質調查所報告第92-7號,共38頁,2003。
陳文山、宋時驊、吳樂群、徐浩德、楊小青,「末次冰期以來台灣海岸平原的海岸線變遷」,考古人類學刊,第40-55頁,2005。
陳郁文,「以反射震測法研究觸口斷層及其附近構造」,國立中央大學,碩士論文,2006。
陳延宗,「以反射震測法研究左鎮斷層及其附近構造」,國立中央大學,碩士論文,2007。
劉彥求、許晉瑋、林啟文,「口宵里斷層之構造特性與活動調查」,經濟部中央地質調查所特刊,第35號,第29-47頁,2020。
黃文正、陳建志、波玫琳、顏一勤,「活動斷層特性精細調查」,經濟部中央地質調查所,共110頁,2020。
黃旭燦、楊耿銘、吳榮章、丁信修、李長之、梅文威、徐祥宏,「台灣陸上斷層帶地質構造與地殼變形調查研究-台灣西部麓山帶地區地下構造綜合分析」,經濟部中央地質調查所報告,93-13號,2004。
黃廷章、丁志興,「台灣晚新第三紀淺海沉積超微化石生物地層」,地質,第3卷,第105-119頁,1981。
黃姝琳,「台灣南部嘉義地區麓山帶構造型態轉換之研究」,國立台灣大學,碩士論文,2009。
黃福坤,「實驗數據的處理與分析」,2011。
楊志成、顏一勤、宋時驊、黃能偉、陳勇全、陳文山、陳于高、吳樂群、張徽正、侯進雄、林啟文,「六甲斷層近萬年來滑移速率之探討」,經濟部中央地質調查所特刊,第16號,第1-16頁,2005。
李元希、謝凱旋、黃敦友、何信昌、陳華玟、張徽正,「台灣西南部前麓盆地的演化」,經濟部中央地質調查所,1997。
張徽正、林啟文、陳勉銘、盧詩丁,「台灣活動斷層概論五十萬分之一台灣動斷層分布圖說明書」,經濟部中央地質調查所特刊,第10號,共114頁,1998。
張錫齡、鍾振東,「台南縣竹頭崎構造之地質」,台灣石油地質討論會論文專輯,中國石油公司,237-249頁,1957。
張憲卿,「嘉義圖幅及說明書五萬分之一台灣地質圖」,經濟部中央地質調查所,第44號,共81頁,2008。
張政亮,「花東海岸地區河流階地形之比較研究-以水璉溪、水母丁溪、三仙溪為例」,臺北市立大學,碩士論文,2006。
宋國城、林慶偉、林偉雄、林文正,「甲仙地質圖幅及說明書,比例尺五萬分之一」,經濟部中央地質調查所,2000。
邵屏華、高銘健,「中埔地質圖幅及說明書,比例尺五萬分之一」,經濟部中央地質調查所,2009。
樂鍇‧祿璞崚岸、陳雲雀、林育璿、毛重仁、黃芸瑄、顏楠庭,「南部地區地震預警系統精進及台灣地震對研究」,中華民國科技部,共35頁,2018。
鄭世楠、張建興、葉永田、辛在勤,「台灣地區歷史災害地震之研究」,中華民國地球物理學會與中華民國地質學會100年年會暨學術研討會,第125頁,2011。
鄭世楠、葉永田,「台灣百年來的大地震」,科學發展,373期,第68-75頁,2004。
鄭世楠、葉永田,「西元1604年至1988年臺灣地區地震目錄」,中央研究院地球科學研究所研究報告,255頁,1989。
洪崇勝,「台灣西南部曾文溪、二仁溪剖面磁性礦物與磁地層之研究」,國立台灣大學海洋研究所,博士論文,1991。
翁淑卿,「臺南台地暨鄰近地區之臺南層及其構造活動」,國立中央大學,碩士論文,2002。
詹海波,「以GPS關測量估算嘉南地區1996-2000年間之地殼變形」,國立中央大學,碩士論文,2000。
Berggren, W. A., Kent, D. V., Aubry, M. P., Hardenbol, J., Geochronology, Time Scales and Global Stratigraphic Correlation, Society for Sedimentary Geology, Volume 54, 1995.
Brocard, G., Pieter, B., Influence of incision rate, rock strength, and bedload supply on bedrock river gradients and valley-flat widths: Field-based evidence and calibrations from western Alpine rivers (southeast France), Geological Society of America, Volume 398, 2006.
Chen, W. S., Kenneth, D. R., Horng, C. S., Chen, Y. G., Shea, K. S., Yeh, M. G., Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan, Geological Society of America, No. 10, pages 1249-1271, 2001.
Chen, Y. G., Liu, T. K., Sea level Changes in the Last Several Thousand Years, Penghu Islands, Taiwan Strait, Quaternary Research, Volume 45, Issue 3, pages 254-262, 1996.
Chi, W. R., The Late Neogene Nannobiostratigraphy In The Tainan Foothills Region, Southern Taiwan, Petroleum Geology of Taiwan, No. 15, pages 89-125, 1978.
Fuchs, M. C., Gloaguen, R., Krbetschek, M., Szulc A., Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces, Geomorphology, Volume 216, pages 79-90, 2014.
Gonzalez-Mieres, R., Suppe, J., Relief and shortening in detachment folds, Journal of Structural Geology, Volume 28, pages 1785-1807, 2006.
Guzmán, O., Vassallo, R., Audemard, F., Mugnier, J. L., Oropeza, J., Yepez, S., Carcaillet, J., Alvarado, M., Carrillo, E., 10Be dating of river terraces of Santo Domingo river, on Southeastern flank of the Mérida Andes, Venezuela: Tectonic and climatic implications, Journal of South American Earth Sciences, Volume 48, pages 85-96, 2013.
Hsieh, M.L., Knuepfer, P. L. K., Synchroneity and morphology of Holocene river terraces in the southern Western Foothills, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines, Geological Society of America Special, Paper. 358, pages 55-74, 2002.
Lavé, J., Avouac, J. P., Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal, Journal of geophysical research, Vol. 105, NO.B3, pages 5735-5770, 2000.
Le Béon, M., Suppe, J., Jaiswal, M. K., Chen, Y. G., Ustaszewski, M. E., Deciphering cumulative fault slip vectors from fold scarps: Relationships between long-term and coseismic deformations in central Western Taiwan, Journal of Geophysical Research Solid Earth, 119, pages 5943-5978, 2014.
Le Béon, M., Huang, M. H., Suppe, J., Huang, S. T., Pathier, E., Huang, W. J., Chen, C. L., Fruneau, B., Baize, S., Ching, K. En., Hu, J. C., Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan, Terrestrial Atmospheric and Oceanic Sciences 28(5), 2017.
Lu, C. H., Lin, Y. S., Chuang, R. Y., Pixel offset fusion of SAR and optical images for 3D coseismic surface deformation, IEEE Geoscience and Remote Sensing Letters, Volume 18, Issue 6, Pages 1049-1053, 2020.
Merrutts, D.J., Vicent, K.R., Wohl, E.E., Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces: Journal of Geophysical Research, v. 99, p. 14031-14050, 1994.
Nativ, R., Turowski, J. M., Site Dependence of Fluvial Incision rate Scaling with Timescale, Journal of Geophysical Research: Earth Surface, Volume 125, 2020.
Pathier, E., Hu, J. C., Doin, M. P., Liao, Y. T., Johann, C., Present-day deformation of anticlines in an active foreland fold-and-thrust belt measured from ALOS-1 InSAR and GPS: The Southwestern Taiwan case. ESA Fringe 2015, Advances in the Science and Applications of SAR interferometry and Sentinel-1 InSAR workshop, 23-27 march 2015, ESA-ESRIN, Frascati, Italy, 2015
Ramsay, J., G., Development of chevron folds. Geological Society of America Bulletin, v. 85, p. 1741-1754, 1974.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., Plicht J. V. D., Intcal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP, Radiocarbon, Vol 55, Nr 4, 2013, p. 1869-1887, 2013.
Rowland, S. M., Duebendorfer, E. M., Schiefelbein, I. M., Structural analysis and synthesis: a laboratory course in structural geology, John Wiley & Sons, 2013.
Ryserson F. J., Tapponnier, P., Finkel, R. C., Mériaux, A. S., Woerd, J.V. D., Lasserre, C., Chevalier, M. L., Xu, X. W., Li, H. B., King G. C. P., Applications of morphochronology to the active tectonics of Tibet, Geological Society of America, Special Paper 415, p. 61-86, 2006.
Shyu, J. B. H., Kerry, S., Avouac, J. P., Chen, W. S., Chen, Y. G., Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan, Journal of geophysical research, Vol. 111, 2006.
Stuiver, M., Reimer, P. J., Extended 14C data base and revised CALIB 3.0 14C age, Radiocarbon, Volume 35, Issue 1, pp. 215-230, 1993.
Wu, D.Y., Li, B., Lu, H., Zhao, J., Zheng, X., Li, Y., Spatial variations of river incision rate in the northern Chinese Tian Shan range derived from late Quaternary fluvial terraces, Global and Planetary Change, Volume 185, 2020.
Yanites, B. J., Tucker, G. E., Hsu, H. L., Chen, C.C., Chen, Y. G., Mueller K. J., The influence of sediment cover variability on long-term river incision rates: An example from the Peikang River, central Taiwan, Journal of Geophysical Research, Vol. 116, 2011.
Yu, S. B., Chen, H. Y., Kuo, L. C., Velocity field of GPS stations in the Taiwan area, Tectonophysics, Vol. 274, pp. 41-59, 1997.
指導教授 波玫琳 黃文正(Maryline Le Béon Wen-Jeng Huang) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明