博碩士論文 108624007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.12.242
姓名 莊信宏(Sin-Hong Jhuang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵
(Combining river recharge and discharge experiments and numerical simulation to discuss the seasonal interactions between groundwater and river water in Donggang river watershed)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
★ 台灣西南部因地下水開發與構造活動引致地層下陷之研究★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example
★ 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan
★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例
★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例
★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例★ Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 東港溪流域位於屏東平原,流域內擁有豐富的地下水資源,該區習慣取用地下水做為用水的來源,因此,如何有效率的管理地下水資源為重要的課題。本研究欲藉由河床出入滲試驗與數值模擬來探討東港溪流域內河川與地下水之間的交互關係,以提供水資源永續經營之參考。
本研究進行河川出入滲試驗與蒐集流域內的水文觀測資料,以及彙整流域內的地質鑽井資料進行地質統計分析,建立異質性水文地質模型,並使用地下水模擬系統(GMS)整合相關資料,建立地下水流數值模式來進行地下水與河川交換的季節性特徵探討。現地試驗的結果顯示,東港溪沿岸主要為地下水出滲,河床傳導度介於2.34×10-8~1.37×10-3 m/s之間,數值分布呈現上游高而下游低的態勢。根據鑽井地質材料比例,流域的主要材料為礫石(佔比約為40%),玫瑰圖分析顯示,地質材料主軸連續方向與河川主流方向相似,顯示該區域沉積環境與河川有相關性。地下水流數值模式結果顯示,乾季的地下水出滲變化與前一濕季的降雨總量有關。濕季的地下水出滲量變化除了與降雨總量有關外,亦與當季的降雨雨型有關。率定完成的數值模式結果顯示,研究區的東港溪段主要呈現地下水出滲,與現地試驗的結果相符合。
摘要(英) Donggang River Watershed is located in Pingtung Plain where the water resources are mainly from groundwater system. Land subsidence thus is a serious problem in the coastal area due to groundwater over-exploitation. Therefore, it is important to investigate the groundwater and river seasonal interaction in the study area for the management of groundwater resources. This study aims to investigate the interactions between river water and groundwater in the Donggang River Watershed by using river recharge and discharge experiments and numerical simulation. The study results can provide a reference for the sustainable management of water resources in the study area.
To overcome the uncertainty from riverbed conductance and hydrogeological model, this study conducted riverbed infiltration experiments in different segments of Donggang River and collected geological drilling data in the study area to construct a heterogeneous hydrogeological model. The field experimental results show that groundwater mainly discharges to river in the study area. The riverbed conductivity ranges from 2.34×10-8 to 1.37×10-3 m/s, and the quantities decrease from upstream to downstream. A heterogeneous hydrogeological model has been established based on the collected geological boreholes. According to the proportion of materials from drilling data, gravel is the majority material in the watershed (approximately 40%). The rose diagram analysis for the continuity of geological materials illustrated that the principal direction is similar to that of the river flow. It shows that the continuity of geological materials matches the sedimentary environment of Donggang River. A numerical model integrates the relevant data by using Groundwater Modeling System (GMS) to discuss the seasonal pattern of interaction between groundwater and river. The results showed that the quantity of river discharge in the dry season is mainly affected by the total amount of rainfall in the previous wet season. The river discharge quantity during the wet season is influenced by not only the total amount of rainfall but also its seasonal pattern. The calibrated results of the numerical model show that Donggang River in the study area is mainly under a groundwater discharge situation, as the experimental results of riverbed infiltration.
關鍵字(中) ★ 河川出入滲試驗
★ 材料異質場地質模型
★ 地溫量測
★ 地下水模擬
★ 地面與地下水交互作用
關鍵字(英) ★ Riverbed infiltration experiments
★ Heterogeneous hydrogeological model
★ Thermal gradient test
★ Groundwater numerical simulation
★ Surface water and groundwater interactions
論文目次 摘要 ii
ABSTRACT iii
圖目錄 viii
表目錄 xv
符號對照表 xvii
第一章 緒論 1
1-1 前言 1
1-2 研究流程 2
第二章 研究區域與資料蒐集 4
2-1 研究區域 4
2-2 水文資料 10
2-3 地質鑽探資料 11
第三章 研究方法 13
3-1 現地觀測與試驗 13
3-1-1 河川水位量測 14
3-1-2 地下水位量測 15
3-1-3 滲流儀試驗與微型壓力計試驗 19
3-1-4 地溫量測 28
3-2 地質材料異質場 35
3-3 地下水流模式MODFLOW 40
第四章 結果與分析 48
4-1 現地試驗結果 48
4-1-1 河川水位量測 48
4-1-2 地下水位量測 50
4-1-3 河水水位與地下水觀測水位交互關係 58
4-1-4 河床出入滲結果量測 60
4-1-5 地溫量測 66
4-1-6 出入滲試驗河床傳導度結果 75
4-2 地質材料異質場結果 76
4-2-1 鑽井材料側向連續性 76
4-2-2 不同垂向解析度材料比例結果 92
4-2-3 不同垂向解析度建立之水文地質模型 95
4-3 地下水流模式MODFLOW結果 105
4-3-1 地下水流模式率定 105
4-3-2 乾季模式探討 124
4-3-3 濕季模式探討 126
第五章 結論與建議 133
5-1 結論 133
5-2 建議 134
附錄 141
參考文獻 參考文獻
[1] 李光敦, 水文學, 五南圖書出版股份有限公司, 2002.
[2] Wang, S.-J., C.-H. Lee, C.-F. Yeh, Y.-F. Choo, & H.-W. Tseng, "Evaluation of Climate Change Impact on Groundwater Recharge in Groundwater Regions in Taiwan". Water. 13(9), 1153, 2021.
[3] 國家災害防救科技中心, https://den.ncdr.nat.gov.tw/.
[4] 枯旱預「井」(上):逾350口抗旱水井 水情紅燈還能持續供水的關鍵, https://e-info.org.tw/node/231503.
[5] 繼續「看見台灣」:從沉淪的國土 看見調適契機, https://e-info.org.tw/node/102920.
[6] 王士榮, "濁水溪流域地下水資源開發與管理". 台灣水利. 67, 43-67 頁, 2019.
[7] 詹景欽,「東港溪流域地面水與地下水資源調查研究」,國立屏東科技大學,碩士論文,2014,
[8] 張丞霄,「林邊溪於莫拉克颱風潰堤之淤泥堆積模擬」,國立屏東科技大學,碩士論文,2014,
[9] 水利署第七河川局, https://www.wra07.gov.tw/Default.aspx.
[10] 財團法人成大研究發展基金會, 屏東平原地下水分區邊界條件之研訂(1/2), 經濟部水利署水利規劃試驗所, 2018
[11] 財團法人中興工程顧問社, 大潮州人工湖補注對於東港溪流域水危及水質影響探討, 經濟部水利署南區水資源局, 2017
[12] 經濟部, 地下水補注地質敏感區劃定計畫書 G0002 屏東平原, 2014
[13] 中央氣象局觀測資料查詢平台, https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp.
[14] 經濟部水利署水文資訊網, https://gweb.wra.gov.tw/Hydroinfo/?id=Index.
[15] 【瑞竣電子報】No.0164 水文水利雙系統,全新改版攜手進擊!(上), https://www.richitech.com.tw/10123/%E6%B0%B4%E6%96%87%E6%B0%B4%E5%88%A9%E9%9B%99%E7%B3%BB%E7%B5%B1-%E5%85%A8%E6%96%B0%E6%94%B9%E7%89%88%E6%94%9C%E6%89%8B%E9%80%B2%E6%93%8A-%E4%B8%8A/.
[16] 水文地質資料庫, https://hydrogis.moeacgs.gov.tw/map/zh-tw.
[17] 中央地質調查所, https://www.moeacgs.gov.tw/achi/achi_more?id=5efc85fab88648f7b4476d01c9dc9bdc.
[18] 工程地質資料庫, https://geotech.moeacgs.gov.tw/imoeagis/.
[19] 經濟部水利署第四河川局, 水文流量測驗標準作業程序, 2010
[20] 國立中央大學, 東港溪主流沿岸八口臨時地下水井之觀測, 經濟部水利署南區水資源局, 2020
[21] Lee, D.R., "A device for measuring seepage flux in lakes and estuaries 1". Limnology and Oceanography. 22(1), 140-147, 1977.
[22] Shaw, R., & E. Prepas, "Anomalous, short‐term influx of water into seepage meters". Limnology and Oceanography. 34(7), 1343-1351, 1989.
[23] Murdoch, L.C., & S.E. Kelly, "Factors affecting the performance of conventional seepage meters". Water Resources Research. 39(6), 2003.
[24] Erickson, D.R.,「A study of littoral groundwater seepage at Williams Lake, Minnesota using separate meters and wells」,University of Minnesota,1981,
[25] Kelly, S.E., & L.C. Murdoch, "Measuring the hydraulic conductivity of shallow submerged sediments". Groundwater. 41(4), 431-439, 2003.
[26] Zamora, C.,「Estimating rates of exchange across the sediment/water interface in the lower Merced River, CA」,California State University, Sacramento,2006,
[27] Rosenberry, D.O., & J.W. LaBaugh, Field techniques for estimating water fluxes between surface water and ground water, 2008
[28] Martinez, C.J., "Mini-piezometers for measuring groundwater to surface water exchange". EDIS. 2010(2), 2010.
[29] 宋瑞君,「埔里地下水區水文收支-以參數最佳化與模擬誤差探討」,逢甲大學,碩士論文,2018,
[30] Davis, S.N., G.M. Thompson, H.W. Bentley, & G. Stiles, "Ground‐water tracers—A short review". Groundwater. 18(1), 14-23, 1980.
[31] 慧技科學有限公司, http://www.smartec.com.tw/product-Tidbit%C2%AE-v2-%E9%88%95%E9%87%A6%E5%9E%8B%E6%BA%AB%E5%BA%A6%E8%A8%98%E9%8C%84%E5%99%A8-002.html.
[32] 國立交通大學土木工程系, 臺灣地區地下水區水文地質調查及地下水資源評估地下水補注潛勢評估與地下水模式建置 (4/4), 經濟部中央地質調查所, 2012
[33] Chen, W., C. Huang, M. Chang, P. Chang, & H. Lu, "The impact of floods on infiltration rates in a disconnected stream". Water Resources Research. 49(12), 7887-7899, 2013.
[34] Gordon, R.P., L.K. Lautz, M.A. Briggs, & J.M. McKenzie, "Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program". Journal of Hydrology. 420, 142-158, 2012.
[35] HYDROSHARE, https://www.hydroshare.org/.
[36] Hatch, C.E., A.T. Fisher, J.S. Revenaugh, J. Constantz, & C. Ruehl, "Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development". Water Resources Research. 42(10), 2006.
[37] Irvine, D.J., L.K. Lautz, M.A. Briggs, R.P. Gordon, & J.M. McKenzie, "Experimental evaluation of the applicability of phase, amplitude, and combined methods to determine water flux and thermal diffusivity from temperature time series using VFLUX 2". Journal of Hydrology. 531, 728-737, 2015.
[38] 國立屏東科技大學, 104 年「大潮州地下水補注湖第 1 期工程實施計畫」水文資料分析評估計畫, 屏東縣政府, 2016
[39] 綠環工程技術顧問有限公司, 105 年度臺北、嘉義、高雄及屏東地區地層下陷監測及分析, 經濟部水利署, 2016
[40] Cressie, N.A.C., Statistics for spatial data, Wiley.
[41] Carle, S.F., "T-PROGS: Transition probability geostatistical software". University of California, Davis, CA. 84, 1999.
[42] McDonald, M.G., & A.W. Harbaugh, A modular three-dimensional finite-difference ground-water flow model, US Geological Survey, 1988.
[43] Prickett, T.A., & C.G. Lonnquist, "Selected digital computer techniques for groundwater resource evaluation". Bulletin (Illinois State Water Survey) no. 55. 1971.
[44] 李心惟,「結合HEC-RAS與MODFLOW於濁水溪沖積扇地下水與地層下陷模擬」,國立成功大學,碩士論文,2014,
[45] 洪秋香,「利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢」,國立中央大學,碩士論文,2011,
[46] 國立臺灣大學水工試驗所, 地下水補注機制水力特性調查分析先驅研究, 經濟部水利署, 2009
[47] 許享崑、蘇瑞榮、李友平、范致豪, 屏東平原地下水資源之供需, 屏東平原地下水及水文地質研討會, 1998
[48] 業興環境科技股份有限公司, 東港溪主流沿岸八口臨時地下水井之水位觀測, 經濟部水利署南區水資源局, 2019
指導教授 王士榮(Shih-Jung Wang) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明