博碩士論文 108624605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.189.7
姓名 阮氏蘭芝(Nguyen Thi Lan Chi)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 褶皺逆衝帶砂岩中的變形條帶:台灣中部集集攔河堰下游晚上新世至早更新世卓蘭層砂岩
(Fold-thrust belt-related deformation bands in porous sandstone: A study on the late Pliocene to early Pleistocene Cholan sandstone downstream of Chichi weir, Central Western Taiwan)
相關論文
★ 台灣東部石梯坪地區變形條帶之研究★ 探討甲仙地震之地表破壞與觸發斷層之關係
★ 台灣東北角海岸萊萊地區煌斑岩脈及其圍岩之構造演育探討★ 藉離散元素法探討竹山槽溝中斷層引致褶皺之構造演育
★ 永和山構造現地應力與注氣引發斷層再活動評估★ 利用電測資料推估台灣彰濱地區鑽井場址的地下應力場
★ 台灣中部三義斷層於后里-豐原地區之近地表地質構造特性研究★ 集集地震17年後地形崖與斷層地表破裂之關係探
★ 菱鐵礦於高壓下電子自旋態轉變與熱傳導率之研究★ 以離散元素法模擬苗栗出磺坑地區構造演育與裂隙分布評估
★ 台灣西南部中寮隧道北端旗山與龍船斷層帶構造特性研究★ 台灣東部花蓮地區米崙活動斷層之古地震研究
★ 東台灣池上斷層於大坡國小地區的特性研究★ 利用地電阻影像法與室內電阻率試驗探討地下構造特性 —以臺灣中部初鄉斷層為例
★ 台灣西南部泥岩車瓜林斷層之岩石特徵與隱示★ 利用曾文溪沿岸階地及碳14定年法分析臺灣西南部崙後斷層及口宵里斷層之活動特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究藉由野外調查和實驗室觀察來描述、分析和解釋初鄉斷層擴展褶皺相關的變形條帶。變形條帶是分佈於台灣中西部褶皺逆衝斷層帶前緣的集集攔河堰下游的晚上新世至早更新世的卓蘭層砂岩中常見的次生構造。初鄉斷層為一東傾左移逆斷層其上盤出現一列褶皺。這褶皺列由半波長有數百米的溪洲子向斜和頂溪洲背斜所組成,向斜為褶皺軸俯衝軸面直立兩翼平緩的褶皺,背斜則為褶皺軸俯衝軸面傾斜的兩翼緊密不對稱褶皺。變形條帶出現在淘選度普通的細粒至粗粒砂岩層中,大部分在背斜西翼和向斜東翼的B區,產狀多為1米長以上,且厚可達2厘米,約呈三組,各組的位態分別為035°/45°SE(組1)、135°/53°SW(組2)和000°/~85°W至85°E(組3)。我們的調查結果顯示,組1的位態與初鄉斷層的位態為次平行,第2、3組的銳角平分線與頂溪洲背斜褶皺軸幾乎垂直,後者意味著近乎平行於最大收縮方向。此外,出現在初鄉斷層跡和溪洲子向斜軸之間區域(C區)的變形條帶在顯微鏡下明顯可辨,但在露頭上則相形模糊,因為它們很薄(僅幾毫米)且也短(<3 dm),並且常轉變成破裂。然而,在頂溪洲背斜的東翼(A區),變形條帶不是與層面近乎平行(類型1),就是靠近小斷層且與之近乎平行(類型2)。類型2是所謂的碎裂變形條帶 (cataclastic DBs),特徵為具破碎細粒礦物呈帶狀,而類型1是分解變形條帶 (disaggregation DBs)主要是透過顆粒流動 (granular flow) 的方式進行重組顆粒,亦即顆粒與顆粒藉由滾動和滑動而產生條帶狀的變形。B區的變形條帶是溶解膠結條帶 (solution and cementation bands),特徵為主要由粘土礦物組成,但仍保留了部分的粉碎細粒石英,可能是因為於溶解或膠結過程中產生大量的粘土礦物,僅保留碎裂變形條帶中粉碎的石英細粒,也因此推測碎裂變形條帶應是溶解膠結條帶的前身。最後,區域C中的變形條帶是滑移變形條帶 (slip DBs),具有滑移面的特徵,在顯微鏡下和露頭上皆很容易觀察到與其相關的滑移面。由以上對研究區的幾種變形條帶的產狀描述、組構及與頂溪洲背斜的幾何關係,本研究認為除了分解變形條帶外,其他幾種變形條帶的形成皆與初鄉斷層擴展褶皺作用相關,控制這些變形條帶發育的主要因素包括岩性、與斷層的接近程度,以及在斷層引致褶皺的位置。綜合言之,A區的變形分解帶可能在岩層褶曲之前形成,初鄉斷層的擴展使得頂溪洲背斜發育,過程中緊隨其後出現三組碎裂變形條帶,隨後大部分的碎裂變形條帶演化為B區的溶解膠結變形條帶和C區的滑移變形條帶,最後向斜才形成。
摘要(英) This study describes, analyzes, and interprets Chushiang fault propagation fold-related deformation bands (DBs) based on field and laboratory observations. DBs are common structural elements found in the late Pliocene to early Pleistocene Cholan sandstones distributed downstream of the Chichi weir along the Choshui River in the frontal part of the fold-thrust belt in central-western Taiwan. One fold train appears in the hanging wall of the east-dipping Chushiang left-lateral reverse fault. It is composed of a plunging, upright, gentle Shizhoutzu syncline and a plunging inclined asymmetric, tight Dingxizhou anticline with a wavelength of hundreds of meters. The DBs occur in moderately sorted, fine-to-coarse grained sandstone layers. Most of them appear long (> one meter) and thick (up to 2 cm) in area B, which is bounded by the anticline axial surface at one side and the syncline axial surface at the other and fall into three sets with orientations of 035°/45°SE (set 1), 135°/53°SW (set 2), and 000°/~85° W to 85°E (set 3), respectively. Our investigation shows that the orientation of the set 1 is sub-parallel to the Chushiang fault orientation. Besides that, the acute bisector of the sets 2 and 3 is sub-perpendicular to the Dingxizhou anticline fold axis, sub-parallel to the inferred direction of maximum contraction. In addition, DBs that appear in the area between the Chushiang fault trace and the Shizhoutzu syncline axial trace (area C) are obvious under microscopic but ambiguous on the outcrops because they are thin (few mm) and short (< 3 dm), and commonly evolve into fractures. However, in the eastern limb of the Dingxizhou anticline (area A), the DBs appear either sub-parallel to the bedding plane (type 1) or close to some minor fault with an orientation parallel to the fault trace (type 2). The type 2 are cataclastic DBs with the characteristic of crushed fine-grained minerals in the bands while the type 1 are disaggregation bands with the characteristic of grain reorganization through a process referred to as granular flow, this is grains are deformed by rolling and sliding. The DBs in area B are solution and cementation bands, which are dominated by clay minerals likely resulting from dissolution or cementation processes but remain the characteristic of crushed fine-grained quartz, likely inherited from cataclastic DBs, i.e. their counterpart in the past. The DBs in area C are slip DBs with the characteristic of slip surfaces easily identifiable as discontinuities within the band under the microscope and on the outcrops. Such evidence including the DB occurrences and textures indicates the origin of these DBs except the disaggregation bands is highly related to the Chushiang fault propagation fold activity. The factors controlling their development include lithology, proximity to the fault, and position on folds induced by faulting. In conclusion, the disaggregation bands in area A likely formed before the emergent anticline, three sets of cataclastic DBs followed during the anticline development, and most of cataclastic DBs evolved into the solution and cementation bands in area B and the slip bands in area C during the post-anticline (syncline forming) phase.
關鍵字(中) ★ 初鄉斷層
★ 卓蘭層
★ 高孔隙率砂岩
★ 變形條帶
關鍵字(英) ★ Chushiang fault
★ Cholan formation
★ sandstone
★ deformation band
論文目次 Abstract i
Acknowledgments v
Table of Contents vi
List of Figures viii
List of Tables xii
Chapter 1: Introduction 1
Chapter 2: Theoretical background 3
2-1 Introduction to Geologic Structural Discontinuities 3
2-2 Deformation band 4
2-1-1 Classification by kinematics 5
2-1-2 Classification by mechanisms 5
2-1-3 Formation conditions 8
2-1-4 Effect on fluid flow 9
2-2 Fault zones 9
2-2-1 Fault core 10
2-2-2 Damage zone 10
Chapter 3: Geological background 14
3-1 Tectonics of Taiwan 14
3-1 Structure in Central Western Taiwan 15
3-2 Stratigraphy 16
Chapter 4: Methodologies 24
4-1 Fieldworks 24
4-2 Laboratory observations 27
4-2-1 Microscopic observations and counting point technique 27
4-2-2 XRD 31
Chapter 5: Observation 38
5-1 Field observation 38
5-1-1 Region Geological Survey 39
5-1-2 Deformation band distribution 51
5-2 Laboratory observation 67
5-2-1 Microscope observation 67
5-2-1 XRD result 79
Chapter 6: Discussion 82
6-1 What type of Deformation bands in this area 82
6-2 The evolution of deformation bands and their relationship with regional structure 85
Chapter 7: Conclusions. 93
References 94
Appendixes 101
Appendix A: Field Site Summary and Samples collection 101
Appendix B: Thin section…………………………………………………………………………….104
Appendix C: Grain-size analysis using thin section 112
Appendix D: Semi-quantitative estimate minerals based on XRD peak intensity and peak area (Bicays method) 115
Appendix E: XRD results 123
參考文獻 Antonellini, M.A., and Aydin, A., 1994. Effects of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG (Am. Assoc. Pet. Geol.) Bulletin 78, p. 355-377.
Antonellini, M.A., and Aydin, A., 1994. Effects of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG (Am. Assoc. Pet. Geol.) Bulletin 79, p. 642-671
Antonellini, M.A., Aydin, A., and Pollard, D.D., 1994. Microstructure of deformation bands in porous sandstones at Arches national Park, Utah. J. Struct. Geol. v.16, p. 941-959.
Antonellini, M., and Aydin, A., 1995. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG (Am. Assoc. Pet. Geol.) Bulletin 79, p. 642–671.
Antonellini, M.A., Aydin, A., and Pollard, D.D., 1994. Microstructure of deformation bands in porous sandstones at Arches National Park, Utah. J. Struct. Geol. v.16, p. 941–959.
Aydin, A., and Johnson, A. M., 1978, Development of faults as zones of deformation bands and as slip surfaces in sandstone, Rock Friction and Earthquake Prediction, Springer, p. 931-942.
Aydin, A., and Johnson, A., 1983. Analysis of faulting in porous sandstones. J. Struct. Geol. v .5, p. 19-31.
Aydin, A., 1978. Small faults formed as deformation bands in sandstone. Pure and Applied Geophysics 116, p. 913-930
Awdal, A., Healy, D., and Alsop, G.I., 2016. Fracture patterns and petrophysical properties of carbonates undergoing regional folding: a case study from Kurdistan, N Iraq. Marine and Petroleum Geology 71, p. 149–167.
Barton, C.C., 1983. Systematic jointing in the Cardium Sanstone along the Bow River, Alberta, Canada. PhD dissertation, Yale University, New Haven, CT
Caine, J. S., Evans, J. P., and Forster, C. B., 1996. Fault zone architecture and permeability structure. Geology, v.24, p. 1025-1028.
Chang, C.-P., Angelier, J. and Huang, C.Y., 2000. Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, v.325, p. 43-62.
Chang, C.P., Angelier, J, Huang, C.Y., and Liu, C.S., 2001. Structural evolution and significance of a mélange in acollision belt: the Lichi Melange and the Taiwan arc-continent collision. Geo. Mag., v 138(6), p 633-651.
Cashman, S., and Cashman, K., 2000. Cataclasis and deformation-band formation in unconsolidated marine terrace sand, Humboldt County, California. Geology v.28, p. 111-114.
Child s, C., Watterson, J. and Walsh, J.J., 1996. A model for the structure and development of fault zones. Journal of the Geological Society London, v153 (3), p. 337-340.
Childs, C., Manzocchi, T., Walsh, J. J., Bonson, C. G., Nicol, A., and Schöpfer, M. P., 2009, A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol. v.31, p. 117-127.
Choi, J.-H., Edwards, P., Ko, K., and Kim, Y.S., 2016. Definition and classification of fault damage zones: a review and a new methodological approach. Earth-Science Reviews, v. 152, p. 70-87
Cosgrove, J.W., and Ameen, M.S., 2000. A comparison of the geometry, spatial organization and fracture patterns associated with forced folds and buckle folds. In: Cosgrove, J.W., Ameen, M.S. (Eds.), Forced Folds and Fractures. Journal of the Geological Society London.
Cowie, P. A., and Shipton, Z. K., 1998. Fault tip displacement gradients and process zone dimensions. J. Struct. Geol. v.20, p. 983-997
Eichhubl, P., Hooker, J.N., and Laubach, S.E., 2010. Pure and shear-enhanced compaction bands in Aztec Sandstone. J. Struct. Geol. v.32, p. 1873-1886.
Evans, J.P and Bradbury, K.K., 2004. Faulting and fracturing of nonwelded Bishop Tuff, eastern California: deformation mechanisms in very porous materials in the vadose zone. Vadose Zone J. 3, p. 602-623
Flodin. E., Prasad, M. and Aydin, A., 2003. Petrophysical constraints on deformation styles in Aztec sandstone. Southern Nevada, USA. Pageoph, 160, p. 1589-1610.
Fossen, H and Hesthammer, J. 1998, Deformation bands and their significance in porous sandstone reservoirs. First break 16, p. 21-25
Fossen, H and Rotevatn, A. 2016. Fault linkage and relay structures in extensitional setting-a review. Earth-Science Review. 154, p. 14-28
Fossen, H., Schultz, R. A., Shipton, Z. K., and Mair, K., 2007, Deformation bands in sandstone: a review. Journal of the Geological Society, v. 164, p. 755-769.
Fossen, H., and Bale, A., 2007, Deformation bands and their influence on fluid flow: AAPG (Am. Assoc. Pet. Geol.) Bulletin v. 91, p. 1685-1700
Fossen, H., Soliva, R., Ballas, G., Trzaskos, B., Cavalcante, G.C., and Schultz, R.A., 2017. A review of deformation bands in reservoir sandstones: geometries, mechanisms and distribution. Geological Society, Special Paper 459, p. 9–33.
Fossen, H., and Hesthammer, J. 1997. Geometric analysis and scaling relations of deformation bands in porous sandstones. J. Struct. Geol., v.19 (12), p. 1479-1483.
Hesthammer, J., and Fossen, H. 2000. Uncertainties associated with fault sealing analysis. Petroleum Geosciences, v. 6, 37-45.
Johansen, T. E. S., and Fossen, H., 2008. Internal geometry of fault damage zones in interbedded siliciclastic sediments. Geological Society, London, Special Publications, v. 299, p. 35-56.
Johansen, T. E. S., Fossen, H., and Kluge, R., 2005. The impact of syn-faulting porosity reduction on damage zone architecture in porous sandstone: an outcrop example from the Moab Fault, Utah. J. Struct. Geol. v.27, p. 1469-1485.
Kim, Y.-S., Peacock, D. C., and Sanderson, D. J., 2004. Fault damage zones: J. Struct. Geol. v. 26, p. 503-517.
Knipe, R. J., Jones, G., and Fisher, Q., 1998. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction. Geological Society, London, Special Publications, v. 147, p. 7-21.
Knipe, R.J., Fisher, Q.J., and Clennell, M.R., 1997. Fault seal analysis: successful methodologies, application and future directions. In: Moller-Pedersen, P., Koestler, A.G. (Eds.), Hydrocarbon Seals: Importance for Exploration and Production: Norwegian Petroleum Society Special Publication, v. 7, p. 15-40.
Lee, Y.H and Shih, Y.S 2010. Coseismic displacement, bilateral rupture, and structural characteristics at the southern end of the 1999 Chi‐Chi earthquake rupture, central Taiwan. J. Geophys. Res., v. 116, B07402
Mollema, P.N., and Antonellini, M.A., 1996. Compaction bands: a structural analog for antimode I cracks in aeolian sandstone. Tectonophysics, v. 267, p. 209-228.
Pittman, E.D., 1981. Effect of fault-related granulation on porosity and permeability of quartz sandstones, Simpson Group (Ordovician) Oklahoma. AAPG (Am. Assoc. Pet. Geol.) Bulletin, v. 65, p. 2381-2387.
Ramsay, J.G and Huber, M.I. 1987. The techniques of Modern structural Geology Volume 2: Fold and Fractures Academic. San Diego, 700pp
Rawling G.C., and Goodwin, L.B, 2003. Cataclasis and particulate flow in faulted, poorly lithified sediments. J. Struct. Geol. v. 25, p. 317-331.
Rotevatn, A., Torabi, A., Fossen, H., and Braathen, A., 2008. Slipped deformation bands: A new type of cataclastic deformation bands in Western Sinai, Suez rift, Egypt. J. Struct. Geol., v. 30, p. 1317-1331
Rotevatn, A., Tveranger, J., Howell, J.A., and Fossen, H., 2009. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: geocellular modelling of the Delicate Arch Ramp, Utah. Petrol. Geosci., v.15, p. 45–58.
Rotevatn, A., Sandve, T. H., Keilegavlen, E., Kolyukhin, D., and Fossen H., 2013. Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, v.13, p. 359–371
Rotevatn, A., and Fossen, H., 2011. Simulating the effect of subseismic fault tails and process zones in a siliciclastic reservoir analogue: implications for aquifer support and trap definition. Marine and Petroleum Geology, v.28, p. 1648–1662.
Schultz, R.A., and Siddharthan, R., 2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics, v. 411, p. 1-18
Schultz, R. A., and Fossen, H., 2008, Terminology for structural discontinuities: AAPG (Am. Assoc. Pet. Geol.) Bulletin, v. 92, p. 853-867.
Schultz, R. A., Soliva, R., Fossen, H., Okubo, C. H., and Reeves, D. M., 2008. Dependence of displacement–length scaling relations for fractures and deformation bands on the volumetric changes across them. J. Struct. Geol. v.30, p. 1405-1411.
Schultz, R.A. 2009. Scaling and paleodepth of compaction bands, Nevada and Utah. J. Geophys. Res., v.114: B03407
Shipton, Z.K., Evans, J.P., Robeson, K.R., Forster, C. and Snelgrove, S. 2002. Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modelling of faults. AAPG (Am. Assoc. Pet. Geol.) Bulletin, v. 86 (5), p. 863-883.
Shipton, Z., and Cowie, P., 2001, Analysis of three-dimensional damage zone development over a micron to km scale range in the high-porosity Navajo sandstone, Utah J. Struct. Geol. v.23, p. 1825-1844
Shipton, Z. K., and Cowie, P. A., 2003, A conceptual model for the origin of fault damage zone structures in high-porosity sandstone: J. Struct. Geol. v.25, p. 333-344.
Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., and Lunn, R. J., 2006. How thick is a fault? Fault displacement‐ thickness scaling revisited: Earthquakes: Radiated energy and the physics of faulting, p. 193-198.
Scholz, C.H 1986a. Microcracking and the inelastic deformation of rock in compression. J. Geophys. Res., V.73, p 1417-1432
Sibson, R., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, v. 133, p. 191- 213.
Soliva, R., Schultz, R.A., Ballas, G., Taboada, A., Wibberley, C., Saillet, Benedicto, A., 2013. A model of strain localization in porous sandstone as a function of tectonic setting, burial and material properties; new insight from Provence (southern France). J. Struct. Geol. v.49, p. 50-63.
Soliva, R., Ballas, G., Fossen, H., Philit, S., 2016. Tectonic regime controls clustering of deformation bands in porous sandstone. Geology, v. 44, p. 423-426.
Gambino. S., Fazio. E., Maniscalco. R, Punturo .R, Lanzafame. G, Barreca. G, and Butler. R.W.H.., 2019. Fold-related deformation bands in a weakly buried sandstone reservoir analogue: A multi-disciplinary case study from the Numidian (Miocene) of Sicily (Italy). J. Struct. Geol. v.118, p. 150–164.
Suppe, J. 1981. Mechanics of mountain-building and metamorphism in Taiwan. Mem. Geological Society China 4, p. 67– 90.
Tondi, E., Antonellini, M., Aydin, A., Marchegiani, L. and Cello, G. 2006. The role of deformation bands, stylolites and sheared stylolites in fault development in carbonate grainstones of Majella Mountain, Italy. J. Struct. Geol. v. 28 (3), p. 376-391
Torabi, A., and Berg, S. S., 2011. Scaling of fault attributes: A review: Marine and Petroleum Geology, v. 28, p. 1444-1460.
Torabi, A., Fossen, H., and Braathen, A., 2013, AAPG (Am. Assoc. Pet. Geol.) Bulletin, v. 97, p. 619-637.
Torabi, A., 2014, Cataclastic bands in immature and poorly lithified sandstone, examples from Corsica, France: Tectonophysics, v. 630, p. 91-102.
Ujiie, K., Maltman, A.J., and Sanchez Gomez, M., 2004. Origin of deformation bands in argillaceous sediments at the toe of the Nankai accretionary prism, southwest Japan. J. Struct. Geol. v. 26, p. 221-231.
Viti, C., Collettini, C., and Tesei, T., 2014. Pressure solution seams in carbonatic fault rocks: mineralogy, micro/nanostructures and deformation mechanism. Contributions to Mineralogy and Petrology, v. 167, p. 1-15.
Wang, T.Y., 2021. Investigation of the Subsurface Structure by Using Electrical Resistivity Tomography and Laboratory Resistivity Test – A Case Study on the Chushiang Fault, Central Taiwan. MS thesis, National Central University (in Chinese with English abstract).
Wibberley, C. A., Yielding, G., and Di Toro, G., 2008. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, v. 299, (1), p. 5-33.
Wilson, J.E., Goodwin, L.B., and Lewis, C., 2006. Diagenesis of deformation band faults: Record 1117 and mechanical consequences of vadose zone flow and transport in the Bandelier Tuff, Los 1118 Alamos, New Mexico. J. Geophys. Res., v. 111, B09201, doi:10.1029/2005
Wilson, J.E., Goodwin, L.B., and Lewis, C., 2003. Deformation band in nonelded ignimbrites: petrophysical controls on fault-zone deformation and evidence of preferential fluid flow. Geology, v. 31, p. 837-840
何春蓀、林佛榮、詹新甫和譚立平,「南投集集大山地質地形圖及構造剖面圖, 比例尺二萬五千分之一」,臺灣省中央地質調查所,1955。
何春蓀、詹新甫和譚立平,「臺灣南投集集大山之地質及煤礦」,臺灣省中央地質 調查所彙刊,第 11 號,第 13-20 頁,1956。
林啟文、周稟珊和張育仁,「臺灣中部濁水溪地區卓蘭層的構造特性及其意義」, 經濟部中央地質調查所特刊,第 34 號,第 1-23 頁,2019。
黃文正,「活動斷層特性精細調查(1/4)」,經濟部中央地質調查所,共 104 頁, 2019。 黃鑑水、謝凱旋和陳勉銘,五萬分之一台灣地質圖說明書,埔里地質圖說明書, 經濟部中央地質調查所,2000。
黎明工程顧問有限公司,「集集攔河堰初次使用安全評估地質補充調查及試驗專 題報告」,經濟部水利署中區水資源局,共 60 頁,2013。
指導教授 黃文正(Wen-Jeng Huang) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明