博碩士論文 108626002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:75.101.211.110
姓名 許家鈞(Chia-Chun Hsu)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件
(Developing the storm surge impact intensity analysis method and reconstructing the 1845 Kouhu storm surge event)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展適用於印度洋之氣旋風暴潮預報模式★ 2006年屏東外海地震引發海嘯的數值模擬探討
★ 馬尼拉海溝地震引發海嘯的潛勢分析★ 三維海嘯湧潮對近岸結構物之影響
★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展
★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用
★ 海岸樹林及消波結構物對海嘯能量消散之模擬★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬
★ 裙礁流場之數值分析與消能特性之探討★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究
★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析★ 蘭嶼海嘯石與1867年基隆海嘯之動力分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 西元1845年雲林口湖發生嚴重之風暴潮事件,造成萬人喪生,為台灣歷史上最嚴重之風暴潮事件。為重建1845口湖風暴潮事件,本文發展風暴潮影響強度分析法(SSIIA)。該法以現行於中央氣象局之COMCOT-SS 風暴潮模式為基礎,進行大量單元颱風之風暴潮模擬,以建立颱風位置對風暴潮與溢淹高程之SSIIA敏感關係圖。本研究為重建颱風路徑,發展颱風路徑對風暴潮影響分析法。該法透過SSIIA之分析結果進行分析,以求得可能之颱風路徑組合,再考慮颱風移動速度之差異性,得出最嚴重影響行進速度之路徑,最後由該結果建立1845年事件之可能情境路徑。並以COMCOT-SS風暴潮模式,模擬該情境路徑所生成之風暴潮。最終將所模擬之結果與歷史文獻記載比對,以獲得結論。
研究結果顯示,根據SSIIA圖各單元颱風源對雲林縣口湖鄉之高影響位置皆位於口湖或口湖北部一帶。而位於北緯22.7度以南之地區,由於其對於口湖造成持續之離岸風影響,導致該區域單元颱風之影響較低;根據颱風路徑對風暴潮影響分析可知,SSIIA法分析範圍以外之颱風路徑,其颱風路徑對風暴潮敏感性大幅降低至可忽略之程度;而於颱風行進速度對於口湖鄉之影響分析可知不同之行進速度其對於口湖之風暴潮影響有類似之影響。
於1845雲林口湖風暴潮事件歷史紀錄中,其記載該颱風事件颱風有影響之地區涵蓋小呂宋國,因此本研究以颱風情境路徑通過巴士海峽之路徑為最終重建路徑,其颱風於巴士海峽生成,並向臺灣海峽中線移動,並沿口湖與澎湖之間穿越並沿海岸線西側北上至東海南方。
根據COMCOT-SS風暴潮模式模擬結果可知於1845雲林口湖風暴潮事件中,颱風中心於第24至30小時雖並未登陸台灣,但其會對於口湖鄉引進之強烈西風,導致嘉義縣及雲林縣一帶低漥地區嚴重之風暴潮溢淹,並於口湖一帶造成約3.7m之最大風暴潮潮高,及約2.6m之最大溢淹高程,此模擬結果與口湖鄉之歷史記載影響範圍相符合。
本研究所建立之分析方法,可系統性分析沿海低窪地區之風暴潮溢淹潛在災情,有助於進行風暴潮風險評估及災防規劃。
摘要(英) In 1845, a severe storm surge occurred at Yunlin Kouhu, killing thousands of people, making it the most powerful storm surge event in Taiwan’s history. This research develops the storm surge impact intensity analysis method (SSIIA) to reconstruct the 1845 Kouhu storm surge. This method is based on the currently operating COMCOT-SS storm surge forecast model in the Central Weather Bureau. It conducts many simulations to establish the SSIIA sensitivity map of typhoon location to storm surge and inundation.
In addition, this research is to reconstruct the typhoon track and develop an analysis method for the influence of the typhoon track on the storm surge. First, the technique analyzes the results of the SSIIA to obtain possible combinations of the typhoon track. It then considers the variation in typhoon movement speeds to get the route that affects the study area most severely. The research finally establishes the scenario of the 1845 event from the results. Then, it uses the COMCOT-SS storm surge model to simulate the storm surge generated by the method and compare the simulated results with historical documents to conclude.
According to the SSIIA map, the study results show that the high-impact typhoon sources in the study area in Yunlin are all located in Kouhu or the northern part of Kouhu. However, in the area south of 22.7 ⁰N, due to its continuous offshore wind impact on Kouhu, typhoons′ effects in this area are relatively low. Furthermore, compared to the worst-case, influences from the racks outside the SSIIA region are negligible, and various typhoon forwarding speeds have similar results to the flooding zone in Kouhu.
The historical record of the 1845 Yunlin Kouhu storm surge event records that the area affected by the typhoon event covers “Little Luzon”. Therefore, this study takes the track that goes through the Bashi Strait as the reconstructed scenario. Thus, the typhoon is generated in Bashi Strait and forwarded to the Taiwan Strait, and moving north to the southern East China Sea along the coastline of Kouhu.
According to the simulation results of the COMCOT-SS storm surge model, it can be known that during the 1845 Yunlin Kouhu storm surge event, although the typhoon center did not make landfall in Taiwan, the solid westerly wind would cause severe flooding in the low-lying area of Yunlin and Chiayi. The maximum storm surge height is about 3.7 m and a maximum flooding elevation of about 2.6 m in the Kouhu area. This simulation result is consistent with the historical record of Kouhu, and the scope of influence is consistent.
The analysis method established by this research can systematically analyze the potential disasters of storm surge flooding in low-lying coastal areas, which is helpful for storm surge risk assessment and disaster prevention planning.
關鍵字(中) ★ 風暴潮影響強度分析法SSIIA
★ 颱風路徑
★ 颱風行進速度
★ 口湖風暴潮
★ COMCOT-SS 風暴潮模式
★ 風暴潮重建
關鍵字(英) ★ Storm Surge Impact Intensity Analysis Method (SSIIA)
★ Typhoon Track
★ Typhoon Translation Speed
★ 1845 Kouhu Storm Surge Event
★ COMCOT-SS
★ Reconstruction of Storm Surge
論文目次 摘要 iii
Abstract v
致謝 vii
目錄 viii
圖目錄 x
表目錄 xviii
一、緒論 1
1-1 研究背景與動機 1
1-2文獻回顧 4
1-2-1 國際風暴潮案例文獻回顧 4
1-2-2 影響強度分析法文獻回顧 5
1-2-3 風暴潮數值模式文獻回顧 6
1-2-4 雲林口湖風暴潮事件文獻回顧 8
二、數值模式 24
2-1 COMCOT-SS模式介紹 24
2-2 控制方程式 25
2-3 大氣風場模式 30
2-4 風暴潮影響強度分析法 32
2-5 巢狀網格設置 37
2-6 數值潮位計設置 40
三、模式驗證 42
3-1 歷史個案模擬分析 42
3-2 尼伯特颱風模擬結果之時序列資料比較 47
四、情境分析 55
4-1颱風路徑對口湖風暴潮事件影響分析 56
4-2 情境分析 66
4-2-1 NS-A情境路徑 67
4-2-2 NS-B情境路徑 72
4-2-3 NS-C情境路徑 77
4-2-4 EW-A情境路徑 82
4-2-5 EW-B情境路徑 87
4-2-6 結果與討論 97
五、颱風行進速度影響分析 103
5-1 1845雲林口湖風暴潮事件還原 103
5-2 行進速度對口湖風暴潮影響分析 106
5-3 結果與討論 108
六、結論與建議 119
七、參考文獻 121
附錄A、情境路徑輸入檔 129
附錄B、行進速度之情境模擬結果 134
參考文獻 [1] Balasubramanian, S., Chalamalla, V. K. (2020). Super cyclone Amphan: A dynamical case study., arXiv preprint, arXiv:2007.02982.
[2] Beardsley, Robert C.; Chen, Changsheng; Xu, Qichun (2013). Coastal flooding in Scituate (MA): A FVCOM study of the 27 December 2010 nor′easter. Journal of Geophysical Research: Oceans, 118(11), 6030–6045. doi:10.1002/2013JC008862.
[3] Bunya, S.; Dietrich, J. C.; Westerink, J. J.; Ebersole, B. A.; Smith, J. M.; Atkinson, J. H.; Jensen, R.; Resio, D. T.; Luettich, R. A.; Dawson, C.; Cardone, V. J.; Cox, A. T.; Powell, M. D.; Westerink, H. J.; Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345–377. doi:10.1175/2009MWR2906.1.
[4] Byrne, D., Horsburgh, K., and Williams, J. (2021). Variational data assimilation of sea surface height into a regional storm surge model: Benefits and limitations, Journal of Operational Oceanography, 1-14.doi:10.1080/1755876X.2021.1884405.
[5] Chang, Ya-Ting; Lin, I-I; Huang, Hsiao-Ching; Liao, Yi-Chun; Lien, Chun-Chi (2020). The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea. Sustainability, 12(3), 939–. doi:10.3390/ su12030939.
[6] Cheikh, M. I., and Momen, M. (2020). The interacting effects of storm surge intensification and sea-level rise on coastal resiliency: a high-resolution turbulence resolving case study., Environmental Research Communications, 2(11), 115002. doi:10.1088/2515-7620/abc39e
[7] Du, Mei; Hou, Yijun; Qi, Peng; Wang, Kai (2020). The impact of different historical typhoon tracks on storm surge: A case study of Zhejiang, China. Journal of Marine Systems, (), 103318–. doi:10.1016/j.jmarsys.2020.103318.
[8] Emanuel, Kerry; DesAutels, Christopher; Holloway, Christopher; Korty, Robert (2004). Environmental Control of Tropical Cyclone Intensity. Journal of the Atmospheric Sciences, 61(7), 843–858. doi:10.1175/1520-0469(2004)061 <0843:ECOTCI>2.0.CO;2..
[9] Flather, R. A., & Proctor, R. (1983). Prediction of North Sea storm surges using numerical models: Recent developments in UK. North Sea Dynamics, 299-317.
[10] Gori, Avantika; Lin, Ning; Smith, James. (2020). Assessing Compound Flooding From Landfalling Tropical Cyclones on the North Carolina Coast. Water Resources Research, 56(4), doi:10.1029/2019WR026788.
[11] Grossman, M. J., Zaiki, M., Mikami, T., & Mock, C. (2018). Reconstructing typhoons affecting Japan in 1877. Journal of Geography (Chigaku Zasshi), 127, 457-470.doi: 10.5026/jgeography.127.457.
[12] Harper B. A. (1999). Numerical modelling of extreme tropical cyclone winds. , 83(1-3), 35–47. doi:10.1016/s0167-6105(99)00059-8.
[13] Hassan, Mohammad Mehedy; Ash, Kevin; Abedin, Joynal; Paul, Bimal Kanti; Southworth, Jane (2020). A Quantitative Framework for Analyzing Spatial Dynamics of Flood Events: A Case Study of Super Cyclone Amphan. Remote Sensing, 12(20), 3454–. doi:10.3390/rs12203454
[14] Hisamatsu, Rikito; Tabeta, Shigeru; Kim, Sooyoul; Mizuno, Katsunori (2020). Storm surge risk assessment for the insurance system: A case study in Tokyo Bay, Japan. Ocean & Coastal Management, 189, 105147 doi:10.1016 /j.ocecoaman.2020.105147.
[15] Hou, H. S., Wang, C. F., & Wang, T. J. (1985). Research on the Development of Wai-Shan-Ding Barrier, SW Coast of Taiwan, ROC. Ocean Space Utilization’85, 353-363.
[16] Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108(8), 1212–1218.
[17] Jelesnianski, C. P. (1992). SLOSH: Sea, lake, and overland surges from hurricanes.
[18] Jelesnianski, C. P. (1967). Numerical computations of storm surges with bottom stress. Monthly Weather Review, 95(11), 740-756.doi:10.1175/1520-0493(1967)095<0740:NCOSSW>2.3.CO;2
[19] Jelesnianski, C. P. (1966). Numerical computations of storm surges without bottom stress. Monthly Weather Review, 94(6), 379-394.doi: 10.1175/1520-0493(1966)094<0379:NCOSSW>2.3.CO;2
[20] Kim Soo Youl; Yasuda Tomohiro; Mase Hajime (2008). Numerical analysis of effects of tidal variations on storm surges and waves, 30(4), 311–322. doi:10.1016/j.apor.2009.02.003.
[21] Kim Yonghwan; Shin Yung-Sup; Lee Kwang Hyun (2004). Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. , 26(5), 213–226. doi:10.1016/j.apor.2005.03.004.
[22] Kundzewicz, Zbigniew W.; Kanae, Shinjiro; Seneviratne, Sonia I.; Handmer, John; Nicholls, Neville; Peduzzi, Pascal; Mechler, Reinhard; Bouwer, Laurens M.; Arnell, Nigel; Mach, Katharine; Muir-Wood, Robert; Brakenridge, G. Robert; Kron, Wolfgang; Benito, Gerardo; Honda, Yasushi; Takahashi, Kiyoshi; Sherstyukov, Boris (2014). Flood risk and climate change: global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28. doi:10.1080/02626667.2013.857411..
[23] Lagmay, Alfredo Mahar Francisco; Agaton, Rojelee P.; Bahala, Mark Allen C.; Briones, Jo Brianne Louise T.; Cabacaba, Krichi May C.; Caro, Carl Vincent C.; Dasallas, Lea L.; Gonzalo, Lia Anne L.; Ladiero, Christine N.; Lapidez, John Phillip; Mungcal, Maria Theresa Francia; Puno, Jose Victor R.; Ramos, Michael Marie Angelo C.; Santiago, Joy; Suarez, John Kenneth; Tablazon, Judd P. (2015). Devastating storm surges of Typhoon Haiyan. International Journal of Disaster Risk Reduction, 11, 1–12. doi:10.1016/j.ijdrr.2014.10.006.
[24] Large, W. G.; Pond, S. (1981). Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. Journal of Physical Oceanography, 11(3), 324–336. doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
[25] Le, Tuan Anh; Takagi, Hiroshi; Heidarzadeh, Mohammad; Takata, Yoshihumi; Takahashi, Atsuhei (2019). Field Surveys and Numerical Simulation of the 2018 Typhoon Jebi: Impact of High Waves and Storm Surge in Semi-enclosed Osaka Bay, Japan. Pure and Applied Geophysics,. doi:10.1007/s00024-019-02295-0
[26] Lee, Eunju; Jung, Taehwa; Shin, Sungwon (2020). Numerical and Probabilistic Study on the Optimal Region for Tsunami Detection Instrument Deployment in the Eastern Sea of Korea. Applied Sciences, 10(17), 6071–. doi:10.3390/app10176071.
[27] Lee, T. C., & Wong, C. F. (2007, October). Historical storm surges and storm surge forecasting in Hong Kong. In Hong Kong Observatory, Paper for the JCOMM Scientific and Technical Symposium on Storm Surges (SSS) in Seoul.
[28] Lewis, Matt; Bates, Paul; Horsburgh, Kevin; Neal, Jeff; Schumann, Guy (2013). A storm surge inundation model of the northern Bay of Bengal using publicly available data. Quarterly Journal of the Royal Meteorological Society, 139(671), 358–369. doi:10.1002/qj.2040.
[29] Li, C.-W., Luk, S.-T., Wong, K.-K., Chen, J.-C., & Cai, Q.-G. (1988). The Measurement And Analysis Of Typhoon-Generated Waves In The South China Sea Near Hong Kong. Offshore Technology Conference.
[30] Lin, N.; Emanuel, K. A.; Smith, J. A.; Vanmarcke, E. (2010). Risk assessment of hurricane storm surge for New York City. Journal of Geophysical Research, 115(D18), D18121–. doi:10.1029/2009jd013630.
[31] Liu, K., Shen, C., & Louie, K. (2001). A 1,000-Year History of Typhoon Landfalls in Guangdong, Southern China, Reconstructed from Chinese Historical Documentary Records. Annals of the Association of American Geographers, 91(3), 453–464.doi: 10.1111/0004-5608.00253.
[32] Madsen Henrik; Jakobsen Flemming (2004). Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal, 51(4), 277–296. doi:10.1016/j.coastaleng.2004.03.001.
[33] Mok, H. Y., Lui, W. H., Lau, D. S., & Woo, W. C. (2020). Reconstruction of the track and a simulation of the storm surge associated with the calamitous typhoon affecting the Pearl River Estuary in September 1874. Climate of the Past, 16(1), 51–64.doi: 10.5194/cp-16-51-2020.
[34] Mori, Nobuhito; Yasuda, Tomohiro; Arikawa, Taro; Kataoka, Tomoya; Nakajo, Sota; Suzuki, Kojiro; Yamanaka, Yusuke; Webb, Adrean (2019). 2018 Typhoon Jebi post-event survey of coastal damage in the Kansai region, Japan. Coastal Engineering Journal, 61(3), 278–294. doi:10.1080/21664250.2019.1619253
[35] Powell, Mark D.; Vickery, Peter J.; Reinhold, Timothy A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones, 422(6929), 279–283. doi:10.1038/nature01481.
[36] Sheng, Y. P., Zhang, Y., & Paramygin, V. A. (2010). Simulation of storm surge, wave, and coastal inundation in the Northeastern Gulf of Mexico region during Hurricane Ivan in 2004. Ocean Modelling, 35(4), 314–331.doi:10.1016 /j.ocemod.2010.09.004.
[37] Smith, S. D., & Banke, E. G. (1975). Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101(429), 665–673.doi: 10.1002/qj.49710142920.
[38] Takagi, H.; Esteban, M.; Shibayama, T.; Mikami, T.; Matsumaru, R.; De Leon, M.; Thao, N.D.; Oyama, T.; Nakamura, R. (2015). Track analysis, simulation, and field survey of the 2013 Typhoon Haiyan storm surge. Journal of Flood Risk Management. doi:10.1111/jfr3.12136 .
[39] Wang, X., & Wang, X. (2017, April). Flooding Mitigation of seawalls and river embankments to storm surges in the coastal areas of Guangdong Province, China. In EGU General Assembly Conference Abstracts (p. 5687).
[40] Weisberg, R. H., & Zheng, L. (2006). Hurricane storm surge simulations for Tampa Bay. Estuaries and Coasts, 29(6), 899-913.doi: 10.1007/BF02798649.
[41] Wang Wenzhi; Chen Junchang; Li Manqiu; Li Yuxiang; Li Zhiwei (1992). Wind waves simulation in the north area of the South China Sea, 10(2), 107–118. doi:10.1007/bf02844742.
[42] Xianwu, Shi; Jufei, Qiu; Bingrui, Chen; Xiaojie, Zhang; Haoshuang, Guo; Jun, Wang; Zhuyuan, Bei (2020). Storm surge risk assessment method for a coastal county in China: case study of Jinshan District, Shanghai. Stochastic Environmental Research and Risk Assessment, 34(5),627 –640. doi:10.1007/s00477-020-01791-3
[43] Yamanaka, Y., Shibata, R., Tajima, Y., & Okami, N. (September, 2019). Inundation characteristics in Arida City due to overtopping waves induced by 2018 Typhoon Jebi. In International Conference on Asian and Pacific Coasts (pp. 199-206). Springer, Singapore.doi: 10.1007/978-981-15-0291-0_28.
[44] Yang, K., Paramygin, V. A., & Sheng, Y. P. (2020). A rapid forecasting and mapping system of storm surge and coastal flooding. Weather and Forecasting, 35(4), 1663-1681.doi: 10.1175/WAF-D-19-0150.1.
[45] Zachry, Brian C.; Booth, William J.; Rhome, Jamie R.; Sharon, Tarah M. (2015). A National View of Storm Surge Risk and Inundation. Weather, Climate, and Society, 7(2), 109–117. doi:10.1175/WCAS-D-14-00049.1.
[46] Zeng, Zhihua; Wang, Yuqing; Wu, Chun-Chieh (2007). Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study. Monthly Weather Review, 135(1), 38–59. doi:10.1175/MWR3278.1.
[47] 曾人口,《金湖春秋》,中國詩文之友社,1978。
[48] 徐泓,《清代台灣自然災害史料新編》,福建人民出版社,1983。
[49] 李豐楙,《金湖文化季》,pp.10-17,1996。
[50] 台灣銀行經濟研究室,《台案匯錄(甲集)》,卷3,pp.174-180,1997。
[51] 王志文,「用地理學來看傳說-清代舊濁水溪出海口的一場災難分析」,2005年彰化研究學術研討會──「濁水溪流域自然與人文研究」論文集,2005。
[52] 江復正,「從電影《KANO》看嘉義行政區的變遷」,取自民報,2014。
[53] 洪瑩發,「追憶171年前那場颱風:遺留口湖與四湖的水難者祠祀與牽水「車藏」儀式」,取自民俗亂彈,2016。
[54] 中央氣象局颱風資料庫,2020,取自https://rdc28.cwb.gov.tw/TDB/。
[55] 李俊叡,〈台灣海嘯速算系統建置暨1867年基隆海嘯事件之還原與分析〉,碩士論文,國立中央大學水文與海洋科學研究所,2014。
[56] 蔡育霖,〈風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究〉,碩士論文,國立中央大學水文與海洋科學研究所,2014。
[57] 林學孜,〈西北太平洋熱帶氣旋移行速度之影響機制探討〉,碩士論文,國立台灣師範大學地球科學研究所,2014。
[58] 李珮瑜,〈蘭嶼海嘯石與1867年基隆海嘯之動力分析〉,碩士論文,國立中央大學水文與海洋科學研究所,2015。
[59] 吳函,〈發展地震海嘯關係分析法並研究台灣之淺在海嘯威脅〉,碩士論文,國立中央大學水文與海洋科學研究所,2017。
[60] 鍾孟儒,〈使用IIA與TATA法,對1960智利海嘯與1867基隆海嘯事件進行還原與分析〉,碩士論文,國立中央大學水文與海洋科學研究所,2018。
[61] 莊淑君,〈極端風暴潮之情境分析與海平面上升對溢淹範圍之影響〉,碩士論文,國立中央大學水文與海洋科學研究所,2019。
[62] 劉天祺,〈18世紀台灣歷史海嘯研究:1781年加藤港暴漲暨1782年海嘯事件之還原與分析〉,碩士論文,國立中央大學水文與海洋科學研究所,2020。
[63] 郭鴻基,〈颱風侵台期間移行速度之研究與預報〉,交通部中央氣象局委託研究計劃成果報告,2007。
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明