博碩士論文 108821009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.14.143.125
姓名 梁佑德(You-De Liang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻小分子熱休克蛋白質-OsHSP16.9A累積對稻米品質影響之研究
(Study on the effect of accumulation of OsHSP16.9A, a rice small heat shock protein, on the rice quality)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析
★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析★ 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析
★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析
★ Oryzasin 1 在水稻種子耐熱性之功能分析★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 實驗室先前研究發現,在DNA微陣列中,過量表現OsHSP16.9A轉殖株中ADP-glucose pyrophosphorylase large subunit 3的表現量亦會明顯上升,已知OsAPL3在水稻中扮演澱粉與糖原合成的限速酶。我們進一步分析臺農67號水稻OsAPL3的表現,結果發現在乳熟期到成熟期的階段,OsHSP16.9A與OsAPL3皆有逐步上升的趨勢。利用比例式雙螢光分子互補系統觀察OsHSP16.9A與OsAPL3之交互作用,結果顯示它們在正常溫度下會有交互作用的形成。為深入探討相關結果,我們繼續建構了抑制表現OsHSP16.9A及過量表現OsAPL3,另亦發現在成熟種子中,WT、OsHSP16.9A-OEs、OsAPL3-OE米粒大小沒有明顯差異,但OsHSP16.9A-OEs種子的蛋白質與澱粉含量較WT高,OsHSP16.9A-RNAi則較OsHSP16.9A-OEs、OsAPL3-OE與WT種子小,澱粉含量亦較三者為低。米粒完整性比較,結果顯示,OsHSP16.9A-OE碎粒比較WT低,表示OsHSP16.9A的累積可以提高米粒的完整性,OsAPL3-OE碎粒比亦較WT低。利用掃描式電子顯微鏡觀察澱粉粒排列,結果顯示OsHSP16.9A-OEs種子,米心排列較鬆散,而米心周圍較WT更為緊密。綜合上述觀察,OsHSP16.9A能保護或幫助OsAPL3來完成其功用,當缺乏OsHSP16.9A時,會造成澱粉粒無法正常累積與排列,所以從結果得知OsHSP16.9A對米質有一定的影響力。
摘要(英) Small molecular weight heat shock proteins (sHSP) are commonly found in eukaryotes, where they bind to denatured proteins to prevent their accumulation and further cellular damage. Previous laboratory studies revealed that the expression of ADP-glucose pyrophosphorylase large subunit 3 (OsAPL3) was significantly increased in the DNA microarray of the over-expressed OsHSP16.9A transgenic strain (OsHSP16.9A-OE), which is known to play a role in rice as a rate-limiting enzyme for amylin and glycogen synthesis. We further analyzed the performance of OsAPL3 in TNG67 rice (Wild type; WT) and found that both OsHSP16.9A and OsAPL3 showed a gradual increase during the milky to mature stage. The results showed that both OsHSP16.9A and OsAPL3 expression level showed a gradual increasing trend from milking to maturity. The interaction between OsHSP16.9A and OsAPL3 was observed using a ratiometric bimolecular fluorescence complementation (rBiFC) system, and the results showed that they interacted to form at normal temperature. To further investigate the related results, we continued to construct the suppression expression of OsHSP16.9A (OsHSP16.9A-RNAi) and over-expression of OsAPL3 (OsAPL3-OE), and also found that in mature seeds, there was no significant difference between WT, OsHSP16.9A-OEs, and OsAPL3-OEs rice grain size, but the OsHSP16.9 A-OEs had higher protein and starch content than WT, while OsHSP16.9A-RNAi was smaller than OsHSP16.9A-OEs, OsAPL3-OEs and WT, and had lower starch content than all three. The results showed that OsHSP16.9A-OE had a lower grain fragmentation ratio than WT, indicating that the accumulation of OsHSP16.9A could improve the integrity of rice grains, and OsAPL3-OEs had a lower grain fragmentation ratio than WT. Scanning Electron Microscope (SEM) was used to observe the starch grain arrangement, and the results showed that the OsHSP16.9A-OEs seeds had a looser arrangement of rice cores and a tighter arrangement around the rice cores than WT. In summary, OsHSP16.9A can protect or help OsAPL3 to fulfill its function. When OsHSP16.9A is lacking, the starch grains cannot accumulate and arrange properly, so it is known from the results that OsHSP16.9A has some influence on rice quality.
關鍵字(中) ★ 小分子熱休克蛋白 關鍵字(英) ★ small heat shock protein
論文目次 摘要 i
Abstract iii
誌謝 iv
目錄 v
圖目錄 vi
附錄目錄 vii
縮寫對照表 viii
序論 1
研究起源與目的 6
材料與方法 9
結果 46
1. 水稻充填時期OsHSP16.9A與OsAPL3之mRNA表現情形 46
2. OsAPL3-OEs篩選與鑑定 46
3. 轉殖株種子的OsHSP16.9A與OsAPL3之mRNA表現情形 47
4. OsHSP16.9A與OsAPL3之間的蛋白質交互作用分析 47
5. 植株性狀表現 48
6. 水稻完整性表現情形 48
7. 水稻白堊質表現情形 49
8. 成熟種子之大小與重量表現情形 49
9. 水稻蛋白質組成份之分析 49
10. 水稻澱粉組成份之分析 50
11. 水稻直鏈澱粉佔比分析 50
12. 澱粉粒排列之情形 50
13. 澱粉合成相關基因之分析 51
討論 52
參考文獻 57
圖表 62
附錄 77
參考文獻 1. Wang, W., et al., Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018. 557(7703): p. 43-49.
2. Okawa, S., A. Makino, and T. Mae, Effect of irradiance on the partitioning of assimilated carbon during the early phase of grain filling in rice. Annals of Botany, 2003. 92(3): p. 357-364.
3. Smirnoff, N., Plant stress physiology. eLS, 2014.
4. Wang, W., et al. Biotechnology of plant osmotic stress tolerance physiological and molecular considerations. in IV International Symposium on In Vitro Culture and Horticultural Breeding 560. 2000.
5. Kotak, S., et al., Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 2007. 10(3): p. 310-316.
6. Wang, W., et al., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004. 9(5): p. 244-252.
7. Rhee, J.-S., et al., Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009. 149(1): p. 104-112.
8. Mogk, A. and B. Bukau, Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress and Chaperones, 2017. 22(4): p. 493-502.
9. Carver, J.A., et al., Proteostasis and the regulation of intra-and extracellular protein aggregation by ATP-independent molecular chaperones: lens α-crystallins and milk caseins. Accounts of Chemical Research, 2018. 51(3): p. 745-752.
10. De Jong, W.W., J.A. Leunissen, and C. Voorter, Evolution of the alpha-crystallin/small heat-shock protein family. Molecular biology and evolution, 1993. 10(1): p. 103-126.
11. de Jong, W.W., G.-J. Caspers, and J.A. Leunissen, Genealogy of the α-crystallin—small heat-shock protein superfamily. International journal of biological macromolecules, 1998. 22(3-4): p. 151-162.
12. Al-Whaibi, M.H., Plant heat-shock proteins: A mini review. Journal of King Saud University - Science, 2011. 23(2): p. 139-150.
13. Kaiser, W.M. and J.A. Bassham, Light-Dark Regulation of Starch Metabolism in Chloroplasts: I. Levels of Metabolites in Chloroplasts and Medium during Light-Dark Transition 1. Plant Physiology, 1979. 63(1): p. 105-108.
14. Whatley, F.R., K. Tagawa, and I. Arnon Daniel, SEPARATION OF THE LIGHT AND DARK REACTIONS IN ELECTRON TRANSFER DURING PHOTOSYNTHESIS. Proceedings of the National Academy of Sciences, 1963. 49(2): p. 266-270.
15. Schirmer, M., et al., Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids, 2013. 32(1): p. 52-63.
16. Xie, F., et al., Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 2009. 49(3): p. 371-377.
17. Tetlow, I.J., Starch biosynthesis in developing seeds. Seed Science Research, 2011. 21(1): p. 5-32.
18. Martin, C. and A.M. Smith, Starch biosynthesis. Plant Cell, 1995. 7(7): p. 971-85.
19. Hannah, L.C. and M. James, The complexities of starch biosynthesis in cereal endosperms. Current Opinion in Biotechnology, 2008. 19(2): p. 160-165.
20. Hwang, S.K., et al., Mechanism Underlying Heat Stability of the Rice Endosperm Cytosolic ADP-Glucose Pyrophosphorylase. Front Plant Sci, 2019. 10: p. 70.
21. Linebarger, C.R.L., et al., Heat Stability of Maize Endosperm ADP-Glucose Pyrophosphorylase Is Enhanced by Insertion of a Cysteine in the N Terminus of the Small Subunit. Plant Physiology, 2005. 139(4): p. 1625-1634.
22. Christensen, J.H., et al., Regional climate projections. Chapter 11. 2007.
23. El-Kereamy, A., et al., The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PloS one, 2012. 7(12): p. e52030.
24. Beckles, D.M. and M. Thitisaksakul, How environmental stress affects starch composition and functionality in cereal endosperm. Starch‐Stärke, 2014. 66(1-2): p. 58-71.
25. Lanning, S.B., et al., Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Research, 2011. 124(1): p. 132-136.
26. Siebenmorgen, T.J., B.C. Grigg, and S.B. Lanning, Impacts of Preharvest Factors During Kernel Development on Rice Quality and Functionality. Annual Review of Food Science and Technology, 2013. 4(1): p. 101-115.
27. Godfray, H.C.J., et al., Food Security: The Challenge of Feeding 9 Billion People. Science, 2010. 327(5967): p. 812-818.
28. Sweeney, M. and S. McCouch, The complex history of the domestication of rice. Ann Bot, 2007. 100(5): p. 951-7.
29. Linares Olga, F., African rice (Oryza glaberrima): History and future potential. Proceedings of the National Academy of Sciences, 2002. 99(25): p. 16360-16365.
30. Khush, G.S., Origin, dispersal, cultivation and variation of rice. Plant molecular biology, 1997. 35(1): p. 25-34.
31. Oka, H.-I., Origin of cultivated rice. 2012: Elsevier.
32. Vinocur, B. and A. Altman, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005. 16(2): p. 123-132.
33. Pressman, E., M.M. Peet, and D.M. Pharr, The Effect of Heat Stress on Tomato Pollen Characteristics is Associated with Changes in Carbohydrate Concentration in the Developing Anthers. Annals of Botany, 2002. 90(5): p. 631-636.
34. Cândido, J.d.S., et al., Poly (acrylamide-co-acrylate)/rice husk ash hydrogel composites. II. Temperature effect on rice husk ash obtention. Composites Part B: Engineering, 2013. 51: p. 246-253.
35. Peng, S., et al., Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 9971-9975.
36. Alcázar, R., et al., Involvement of polyamines in plant response to abiotic stress. Biotechnology letters, 2006. 28(23): p. 1867-1876.
37. Flowers, T. and A. Yeo, Breeding for salinity resistance in crop plants: where next? Functional Plant Biology, 1995. 22(6): p. 875-884.
38. Guan, J.-C., et al., Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant molecular biology, 2004. 56(5): p. 795-809.
39. Wehmeyer, N. and E. Vierling, The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant physiology, 2000. 122(4): p. 1099-1108.
40. Cheng, J.-Y., 水稻小分子量熱休克蛋白質-OsHSP16. 9A 在水稻種子耐熱性之功能分析. 2016, National Central University.
41. Ballicora, M.A., A.A. Iglesias, and J. Preiss, ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis research, 2004. 79(1): p. 1-24.
42. Stark, D.M., et al., Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 1992. 258(5080): p. 287-292.
43. Grefen, C. and M.R. Blatt, A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques, 2012. 53(5): p. 311-314.
44. Wehmeyer, N., et al., Synthesis of Small Heat-Shock Proteins Is Part of the Developmental Program of Late Seed Maturation. Plant Physiology, 1996. 112(2): p. 747-757.
45. DeRocher, A.E. and E. Vierling, Developmental control of small heat shock protein expression during pea seed maturation. The Plant Journal, 1994. 5(1): p. 93-102.
46. Chandusingh, P., et al., Molecular mapping of quantitative trait loci for grain chalkiness in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding, 2013. 73(3): p. 244-251.
47. Juliano, B.O., A.A. Antonio, and B.V. Esmama, Effects of protein content on the distribution and properties of rice protein. Journal of the Science of Food and Agriculture, 1973. 24(3): p. 295-306.
48. Bao, J., Rice starch, in Rice. 2019, Elsevier. p. 55-108.
49. Shen, Y.-D., et al., Design and synthesis of immunoconjugates and development of an indirect ELISA for rapid detection of 3, 5-dinitrosalicyclic acid hydrazide. Molecules, 2008. 13(9): p. 2238-2248.
50. Williams, V.R., et al., Rice starch, varietal differences in amylose content of rice starch. Journal of Agricultural and Food Chemistry, 1958. 6(1): p. 47-48.
51. Sato, Y. and S. Yokoya, Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17. 7. Plant cell reports, 2008. 27(2): p. 329-334.
52. Lee, B.-H., et al., Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000. 245(2): p. 283-290.
53. Chen, X., et al., Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(4): p. 818-828.
54. Huang, X.-J., 水稻熱休克蛋白質 OsHSP16. 9A 與 OsHSP101 之交互作用分析. 2020, National Central University.
55. Sun, W., M. Van Montagu, and N. Verbruggen, Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2002. 1577(1): p. 1-9.
56. de Jong, W.W., J.A. Leunissen, and C.E. Voorter, Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol, 1993. 10(1): p. 103-26.
57. de Jong, W.W., G.J. Caspers, and J.A. Leunissen, Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol, 1998. 22(3-4): p. 151-62.
58. Al-Whaibi, M.H., Plant heat-shock proteins: a mini review. Journal of King Saud University-Science, 2011. 23(2): p. 139-150.
59. Banerjee, A. and A. Roychoudhury, Small heat shock proteins: structural assembly and functional responses against heat stress in plants, in Plant metabolites and regulation under environmental stress. 2018, Elsevier. p. 367-376.
60. Zhou, W., et al., Overexpression of the 16-kDa α-amylase/trypsin inhibitor RAG2 improves grain yield and quality of rice. Plant Biotechnol J, 2017. 15(5): p. 568-580.
61. Liu, Z., Z. Wang, and J. Zhu, Observational studies on amyloplasts with single-starch granule in rice endosperm. Brazilian Journal of Botany, 2016. 39(3): p. 821-832.
62. Zuo, J. and J. Li, Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 2014. 48(1): p. 99-118.
63. Jones, D., et al., An analysis of seed development in Pisum sativum L. IX. Genetic analysis of lipid content. Plant breeding, 1990. 104(2): p. 144-151.
64. Oiestad, A., J. Martin, and M. Giroux, Yield increases resulting from AGPase overexpression in rice are reliant on plant nutritional status. Plant Growth Regulation, 2019. 89(2): p. 179-190.
65. Kang, G., et al., Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene. Plant Physiology and Biochemistry, 2013. 73: p. 93-98.
66. Li, N., et al., Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize. Planta, 2011. 233(2): p. 241-250.
67. Ahmed, N., et al., Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 2015. 95(11): p. 2237-2243.
68. Lin, S.K., et al., Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression.
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明