博碩士論文 108821014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.147.62.19
姓名 王碩平(Shuo-Ping Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 研究PM2.5引起腸道細胞不良反應的相關機制:氧化壓力調控引起發炎反應、細胞增生以及細胞自噬的產生
(Study the molecular mechanism underlying adverse effects associated PM2.5 to colonic epithelial cells: oxidative stress regulated inflammation, cell proliferation and Autophagy)
相關論文
★ 雙酚混合物對斑馬魚胚胎心跳減緩的影響:鈣離子幫浦與鈣離子通道的參與★ 環狀BMP-2肽對肌原細胞中BMP-2蛋白信號的上調
★ 左旋硒代胱胺酸抑制Nrf2與細胞自噬訊息途徑導致Nrf2成癮的結直腸癌細胞死亡★ PM2.5 暴露對人類結腸腺癌 Caco-2 細胞的不良影響 -氧化壓力、發炎、細胞增殖及自噬損傷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-22以後開放)
摘要(中) 懸浮微粒(Particulate Matter, PM)是一種重要的空氣污染物,由懸浮在空氣中的各種複雜有機或是無機成分混合組成。PM會通過呼吸系統進入肺部造成肺部損傷,甚至PM可能藉由粘膜纖毛運輸系統從肺部進入人體腸道,而這也被認為和腸道發炎有關。已經有研究指出,PM的暴露和腸道不良反應有關,包括發炎反應、腸道通透性增加和腸道上皮細胞增生。然而PM與腸道發炎的關係與相關分子機制仍未釐清,因此在本次研究中,我們想要探討PM對結腸上皮(WiDr)細胞的不良反應的分子機制。結果發現,在暴露後的不同時間,PM誘導細胞內ROS的產生,使得細胞內抗氧化酵素NQO-1以及HO-1表現增加,以及發炎反應的活化,其中包括了NF-κB途徑中p65和IκBα的磷酸化,並伴隨著促進發炎的細胞激素IL-8蛋白質表現的增加,而抗氧化劑可以抑制PM引起的發炎反應,因此我們推測PM引起的ROS可以活化NF-κB所調控的發炎途徑。同時我們也利用BrdU分析,確認PM的暴露會引起腸道細胞發生細胞增殖,以及AKT磷酸化的發生,而抗氧化劑與AKT抑制劑都可以抑制PM引起的細胞增生。最後,我們發現PM處理下,細胞自噬(Autophagy)相關的蛋白質LC3-II、Beclin1以及P62的表現量增加,抗氧化劑以及Autophagy的抑制劑3MA會減少PM引起的發炎反應以及細胞增生。總結而言,暴露PM可能會對腸道造成損傷,主要藉由在結腸上皮細胞中引起ROS增加進而造成發炎反應、抗氧化機制活化、細胞增殖以及細胞自噬的產生。
摘要(英) Particulate Matter (PM), as the main air pollutants, is a mixture composed of inorganic and organic components in the air. PM can enter the lungs through the respiratory system and cause lung damage. Also, PM may enter the human intestines from the lungs via the mucociliary transport system, which is also considered to be related to intestinal inflammation. Several studies report that PM exposure is associated with intestinal diseases, including inflammation, increased intestinal permeability and epithelial cell proliferation. However, it is still unclear the relationship and molecular mechanisms between PM and intestinal adverse effects. In this study, we would like to clarify the molecular mechanisms underlying adverse effects associated PM in human colonic epithelial (WiDr) cells. Our result sowed that PM increased the levels of ROS leading to antioxidant enzymes NQO-1 and HO-1 productions, and NF-κB mediated inflammatory response activation. The phosphorylation of p65 and IκBα occurred and then triggered sequentially downstream inflammatory cytokine IL-8 production after PM exposure in WiDr cells. Antioxidants N-acetylcysteine (NAC) pretreatment can reduce the PM-induced IL-8 production. Therefore, our results indicated that ROS involved in PM-induced NF-κB inflammation pathway in colonic epithelial cells. Meanwhile, we found that PM exposure increased intestinal cell proliferation by using BrdU analysis. AKT phosphorylation was also increased after PM exposure. AKT inhibitor, MK2206, pretreatment reduced the PM-increased cell proliferation. Finally, we found that under PM treatment, the expression of autophagy-related proteins LC3-II, Beclin1, and P62 increased. Antioxidants and Autophagy inhibitor 3-Methyladenine (3MA) can reduce IL-8 production and cell proliferation after PM treatment. In summary, PM exposure may cause adverse effects to the intestinal epithelial cells through ROS mediated inflammation, activation of antioxidant mechanisms, cell proliferation, and the production of autophagy. Taken together, our result will help to clarify the underlying molecular mechanisms of adverse effects induced by PM, which may provide scientific evidences to reduce the impacts of PM on public health in the future.
關鍵字(中) ★ PM2.5 關鍵字(英)
論文目次 目錄
中文摘要.....................................................Ⅰ
Abstract....................................................Ⅱ
致謝........................................................Ⅲ
目錄.......................................................Ⅳ
圖目錄.....................................................Ⅶ
縮寫檢索表.................................................Ⅷ
第一章 緒論..................................................1
1.1. 懸浮微粒(Particulate Matter)背景介紹...................1
1.2. 活性氧化物質(ROS).....................................2
1.3. Nuclear Factor kappa-light-chain-enhancer of activated B cells(NF-κB)之訊號途徑.....................................3
1.4. PI3K-AKT之訊號傳遞......................................4
1.5. 細胞自噬(Autophagy)之訊號傳遞..........................5
第二章 研究目的..............................................7
第三章 實驗材料及方法.........................................8
3.1. 實驗材料................................................8
3.1.1 實驗細胞株.............................................8
3.1.2實驗材料................................................8
3.1.3. 試劑.................................................8
3.1.4. 耗材................................................10
3.1.5 儀器.................................................10
3.2. 實驗方法...............................................11
3.2.1. WiDr細胞之培養及處理方法..............................11
3.2.2. PM處理方法...........................................11
3.2.3. 蛋白質濃度測定.......................................11
3.2.4. 西方墨點法(Western Blotting).......................12
3.2.5. 細胞活性測試 (CCK-8, cell counting kit 8)............14
3.2.6. 氧化壓力測試.........................................14
3.2.7. 溴化去氧尿苷測試(BrdU assay)........................14
3.2.8. 酵素免疫分析法 (ELISA)...............................15
3.2.9. 超氧陰離子(O2●-)之檢測...............................16
第四章 結果.................................................17
4.1. PM成分內容分析.........................................17
4.2. PM暴露後促進腸道細胞的細胞存活率.........................18
4.3. PM的暴露會引起腸道細胞內氧化壓力以及抗氧化反應............18
4.4. PM暴露後引起腸道細胞產生Superoxide之情形................19
4.5. PM的暴露會引起WiDr細胞的發炎反應........................20
4.6. PM暴露後促進腸道細胞增生的現象..........................21
4.7. PM藉由ROS調控腸道細胞的存活率以及細胞增生................21
4.8. PM促進腸道細胞AKT蛋白質表現量增加.......................22
4.9. PM會引起腸道細胞產生細胞自噬............................23
第五章 討論.................................................25
第六章 參考文獻.............................................29
表.........................................................34
圖.........................................................36
附錄一.....................................................53
參考文獻 1. Ho, C.C., et al., Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. Sci Total Environ, 2020. 719: p. 137243.
2. Ghio, A.J., M.S. Carraway, and M.C. Madden, Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev, 2012. 15(1): p. 1-21.
3. Billet, S., et al., Ambient particulate matter (PM2.5): physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ Res, 2007. 105(2): p. 212-23.
4. Manisalidis, I., et al., Environmental and Health Impacts of Air Pollution: A Review. Front Public Health, 2020. 8: p. 14.
5. Xing, Y.F., et al., The impact of PM2.5 on the human respiratory system. J Thorac Dis, 2016. 8(1): p. E69-74.
6. Du, Y., et al., Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis, 2016. 8(1): p. E8-E19.
7. Kaplan, G.G., et al., The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol, 2010. 105(11): p. 2412-9.
8. Ananthakrishnan, A.N., et al., Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. Inflamm Bowel Dis, 2011. 17(5): p. 1138-45.
9. Mutlu, E.A., et al., Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut, 2018. 240: p. 817-830.
10. Gwinn, M.R. and V. Vallyathan, Respiratory burst: role in signal transduction in alveolar macrophages. J Toxicol Environ Health B Crit Rev, 2006. 9(1): p. 27-39.
11. Sauer, H., M. Wartenberg, and J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem, 2001. 11(4): p. 173-86.
12. Morgan, M.J. and Z.G. Liu, Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res, 2011. 21(1): p. 103-15.
13. Yun, H.R., et al., Roles of Autophagy in Oxidative Stress. Int J Mol Sci, 2020. 21(9).
14. Rao, X., et al., Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal, 2018. 28(9): p. 797-818.
15. Valavanidis, A., et al., Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health, 2013. 10(9): p. 3886-907.
16. Kensler, T.W., N. Wakabayashi, and S. Biswal, Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol, 2007. 47: p. 89-116.
17. Tkachev, V.O., et al., Synthetic water-soluble phenolic antioxidant regulates l-arginine metabolism in macrophages: a possible role of Nrf2/ARE. Biochemistry (Mosc), 2010. 75(5): p. 549-53.
18. Drechsler, Y., et al., Heme oxygenase-1 mediates the anti-inflammatory effects of acute alcohol on IL-10 induction involving p38 MAPK activation in monocytes. J Immunol, 2006. 177(4): p. 2592-600.
19. Belcher, J.D., et al., Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice. J Clin Invest, 2006. 116(3): p. 808-16.
20. Siegel, D., et al., NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol, 2004. 65(5): p. 1238-47.
21. Siegel, D., et al., The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol, 1997. 52(2): p. 300-5.
22. Asher, G., et al., NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci U S A, 2002. 99(5): p. 3099-104.
23. Asher, G., et al., Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc Natl Acad Sci U S A, 2002. 99(20): p. 13125-30.
24. Gilmore, T.D., Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006. 25(51): p. 6680-4.
25. Brasier, A.R., The NF-kappaB regulatory network. Cardiovasc Toxicol, 2006. 6(2): p. 111-30.
26. Hoffmann, A., et al., The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science, 2002. 298(5596): p. 1241-5.
27. Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a001651.
28. Liu, T., et al., NF-kappaB signaling in inflammation. Signal Transduct Target Ther, 2017. 2.
29. Harada, A., et al., Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol, 1994. 56(5): p. 559-64.
30. Vlahopoulos, S., et al., Nuclear factor-kappaB-dependent induction of interleukin-8 gene expression by tumor necrosis factor alpha: evidence for an antioxidant sensitive activating pathway distinct from nuclear translocation. Blood, 1999. 94(6): p. 1878-89.
31. Brew, R., et al., Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine, 2000. 12(1): p. 78-85.
32. Mazzucchelli, L., et al., Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. Am J Pathol, 1994. 144(5): p. 997-1007.
33. Landen, N.X., D. Li, and M. Stahle, Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci, 2016. 73(20): p. 3861-85.
34. Wang, J., et al., PM2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF-kappaB pathway. Hum Exp Toxicol, 2019. 38(3): p. 311-320.
35. Nam, H.Y., et al., The role of nitric oxide in the particulate matter (PM2.5)-induced NFkappaB activation in lung epithelial cells. Toxicol Lett, 2004. 148(1-2): p. 95-102.
36. Wang, J., et al., Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-kappaB signaling pathway. J Thorac Dis, 2017. 9(11): p. 4398-4412.
37. Li, X., et al., Colonic Injuries Induced by Inhalational Exposure to Particulate-Matter Air Pollution. Adv Sci (Weinh), 2019. 6(11): p. 1900180.
38. Yu, J.S. and W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development, 2016. 143(17): p. 3050-60.
39. Hemmings, B.A. and D.F. Restuccia, PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol, 2012. 4(9): p. a011189.
40. Kumar, B., et al., Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res, 2008. 68(6): p. 1777-85.
41. Ojeda, L., et al., Critical role of PI3K/Akt/GSK3beta in motoneuron specification from human neural stem cells in response to FGF2 and EGF. PLoS One, 2011. 6(8): p. e23414.
42. Liu, R., et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis, 2020. 11(9): p. 797.
43. Bai, D., L. Ueno, and P.K. Vogt, Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer, 2009. 125(12): p. 2863-70.
44. Kennedy, S.G., et al., The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev, 1997. 11(6): p. 701-13.
45. Muilenburg, D., et al., Role of autophagy in apoptotic regulation by Akt in pancreatic cancer. Anticancer Res, 2014. 34(2): p. 631-7.
46. Atillasoy, E. and P.R. Holt, Gastrointestinal proliferation and aging. J Gerontol, 1993. 48(2): p. B43-9.
47. Lee, D.C., et al., Urban particulate matter regulates tight junction proteins by inducing oxidative stress via the Akt signal pathway in human nasal epithelial cells. Toxicol Lett, 2020. 333: p. 33-41.
48. Baehrecke, E.H., Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol, 2005. 6(6): p. 505-10.
49. Kondo, Y., et al., The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005. 5(9): p. 726-34.
50. Cordani, M., et al., Interplay between ROS and Autophagy in Cancer and Aging: From Molecular Mechanisms to Novel Therapeutic Approaches. Oxid Med Cell Longev, 2019. 2019: p. 8794612.
51. Maiuri, M.C., et al., Autophagy regulation by p53. Curr Opin Cell Biol, 2010. 22(2): p. 181-5.
52. Glick, D., S. Barth, and K.F. Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12.
53. Zheng, K., et al., Selective Autophagy Regulates Cell Cycle in Cancer Therapy. Theranostics, 2019. 9(1): p. 104-125.
54. Qian, M., X. Fang, and X. Wang, Autophagy and inflammation. Clin Transl Med, 2017. 6(1): p. 24.
55. Soussi, H., K. Clement, and I. Dugail, Adipose tissue autophagy status in obesity: Expression and flux--two faces of the picture. Autophagy, 2016. 12(3): p. 588-9.
56. Deng, X., et al., PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol In Vitro, 2013. 27(6): p. 1762-70.
57. Haq, S., et al., Autophagy: roles in intestinal mucosal homeostasis and inflammation. J Biomed Sci, 2019. 26(1): p. 19.
58. Zhang, W., et al., Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ Pollut, 2008. 153(3): p. 594-601.
59. Ravindra, K., E. Wauters, and R. Van Grieken, Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Sci Total Environ, 2008. 396(2-3): p. 100-10.
60. Pies, C., et al., Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 2008. 72(10): p. 1594-1601.
61. De La Torre-Roche, R.J., W.Y. Lee, and S.I. Campos-Diaz, Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater, 2009. 163(2-3): p. 946-58.
62. Akyuz, M. and H. Cabuk, Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ, 2010. 408(22): p. 5550-8.
63. Oliveira, C., et al., Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere, 2011. 83(11): p. 1588-96.
64. Katsoyiannis, A., E. Terzi, and Q.Y. Cai, On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 2007. 69(8): p. 1337-9.
65. Tobiszewski, M. and J. Namiesnik, PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut, 2012. 162: p. 110-9.
66. Forrester, S.J., et al., Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res, 2018. 122(6): p. 877-902.
67. Wu, Y.T., et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 2010. 285(14): p. 10850-61.
68. Wang, W., et al., Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol, 2018. 15(1): p. 17.
69. Vignal, C., et al., Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol, 2017. 14(1): p. 46.
70. Xu, F., et al., Necroptosis Contributes to Urban Particulate Matter-Induced Airway Epithelial Injury. Cell Physiol Biochem, 2018. 46(2): p. 699-712.
71. Mariani, F., P. Sena, and L. Roncucci, Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol, 2014. 20(29): p. 9716-31.
72. Chen, Y., et al., microRNA-374a suppresses colon cancer progression by directly reducing CCND1 to inactivate the PI3K/AKT pathway. Oncotarget, 2016. 7(27): p. 41306-41319.
73. Suman, S., et al., Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells. Oncotarget, 2016. 7(12): p. 13854-64.
74. Mundi, P.S., et al., AKT in cancer: new molecular insights and advances in drug development. Br J Clin Pharmacol, 2016. 82(4): p. 943-56.
75. Wu, Y., et al., The role of autophagy in maintaining intestinal mucosal barrier. J Cell Physiol, 2019. 234(11): p. 19406-19419.
76. Shao, B.Z., et al., The Role of Autophagy in Inflammatory Bowel Disease. Front Physiol, 2021. 12: p. 621132.
77. Hu, X., et al., ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology, 2019. 156(4): p. 1098-1111.
78. Varma, M., et al., Cell Type- and Stimulation-Dependent Transcriptional Programs Regulated by Atg16L1 and Its Crohn′s Disease Risk Variant T300A. J Immunol, 2020. 205(2): p. 414-424.
79. Wang, S.L., et al., Impact of Paneth Cell Autophagy on Inflammatory Bowel Disease. Front Immunol, 2018. 9: p. 693.
指導教授 羅月霞 審核日期 2021-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明