博碩士論文 108821613 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.14.83.223
姓名 瑞絲娜(Gita Riswana Nawung Rida)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ 探討Alanyl-tRNA synthetase的演化及專一性★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討
★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能★ 探討酵母菌Valyl-tRNA synthetase的生化活性
★ 酵母菌轉譯起始機制的研究★ 酵母菌GRS1基因的轉譯起始機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Abstract (in Chinese) Aminoacyl-tRNA synthetase (aaRSs) is a group of essential enzymes whose main function is to connect specific amino acids to their corresponding tRNAs to participate in protein synthesis. AlanyltRNA synthetase (AlaRS) contains two highly conserved amino acid residues, N and D, which are primarily used to identify G3:U70 recognition determinants on tRNAAla. Surprisingly, these two residues were replaced by G and E in Caenorhabditis elegans mitochondrial AlaRS (CeAlaRSm). To elucidate the mechanism of tRNAAla recognition, we performed point mutations on these two residues and analyzed their effects on enzyme activity. We used E. coli microhelixAla as a receptor for the amine acylation reaction. Our results showed that the G322 mutation A or N had little effect on the activity of its complementary yeast AlaRS rejecting strains, and that G322A or G322N could effectively provide the AlaRS activity required for the growth of the rejected strains; The E420A and E420D mutations are similar. Amine acylation experiments have shown that these mutations do not impair the amine alkylation activity of CeAlaRSm, and both wild-type and mutant enzymes can effectively amide amichelixAla containing G3:U70. Although wild enzymes cannot aminoimide mutate microhelixAla (containing G3:C70 or A3:U70), mutant enzymes can still effectively aminoiminate mutant microhelixAla. These results suggest that CeAlaRSm uses negative interaction to screen non-G3:U70 tRNAs.
摘要(英) Aminoacyl-tRNA synthetases (aaRSs) belong to a group of essential enzymes that are involved in protein synthesis. AaRSs attach a specific amino acid to its cognate tRNA, forming aa-tRNA, which is then delivered to ribosomes for polypeptide synthesis. Alanyl-tRNA synthetase (AlaRS) contains two highly conserved amino acid residues in its tRNA-recognition domain, Asparagine (N) and Aspartic acid (D), that play a role in recognizing the universal identity element of tRNAAla (G3:U70). Surprisingly, these two conserved residues are respectively substituted by G322 and E420 in the Caenorhabditis elegans mitochondrial AlaRS (CeAlaRSm). To elucidate the mechanism underlying the specific tRNA recognition, we mutated these two residues and analyzed their effects on the enzyme’s activities. In our assay, we used E. coli microhelixAla as the substrate for aminoacylation. Our functional assay showed that mutation of G322 to Alanine (A) or Asparagine (N) had little effect on its activity to rescue a yeast mitochondrial AlaRS knockout strain on YPG. A similar scenario was observed for E420A and E420D mutants. Aminoacylation assay toward wild-type E. coli microhelixAla further showed that these mutations had little effect on the charging activity of CeAlaRSm. The wild-type and mutant CeAlaRSm enzymes showed a comparable activity towards the wild-type microhelixAla with G3:U70. While the wild-type enzyme failed to charge the mutant microhelixAla (with G3:C70 or A3:U70), the mutant enzyme retained a full charging activity towards these two mutant microhelicesAla. These data suggest that G322 and E420 of CeAlaRSm recognizes G3:U70 through negative interaction; they are used for selection against non-G3:U70 tRNA.
關鍵字(中) ★ Alanyl-tRNA synthetase (AlaRS)
★ Aminoacylation
★ Identity element
★ Protein synthesis
關鍵字(英) ★ Alanyl-tRNA synthetase (AlaRS)
★ Aminoacylation
★ Identity element
★ Protein synthesis
論文目次 TABLE OF CONTENT Abstract (in Chinese) i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENT iv LIST OF FIGURES vi ABBREVIATION vii CHAPTER I INTRODUCTION 1 1.1 Aminoacyl-tRNA synthetases (aaRSs) are key enzymes for protein synthesis 1 1.2 Alanyl-tRNA synthetase (AlaRS) possesses a prototype structure 2 1.3 tRNAAla identity is established through recognition of the G3:U70 pair by AlaRS 3 1.4 Caenorhabditis elegans possesses a non-canonical mitochondrial alanyl-tRNA synthetase and a non-canonical tRNAAla 3 1.5 Aim of Study 4 CHAPTER II MATERIALS and METHODS 5 2.1 Plasmids construction and protein purification of CeAlaRSm 5 2.2 In vivo heterologous complementation assay 6 2.3 Western Blotting 7 2.4 Substrate preparation 7 2.5 In vitro Aminoacylation assay 8 CHAPTER III RESULTS 9 3.1 Mutagenesis of G322 and E420 9 3.2 CeAlaRSm mutants could rescue a yeast ALA1 knockout strain on YPG 9 3.3 Expression of mutants CeAlaRSm in E. coli 10 3.4 Aminoacylation of WT microhelixAla by G322A and E420A 11 3.5 Aminoacylation of mutant microhelicesAla by G322A and E420A 12 CHAPTER IV DISCUSSION 13 4.1 CeAlaRSm use Gly (G) and Glu (E) residues to select against non-cognate tRNA 13 4.2 Mitochondrial AaRSs coadaptation with its cognate mttRNA 14 LIST OF FIGURES 17 REFERENCES 24 APPENDIX A PRIMER LIST 28 APPENDIX B PLASMID LIST 30 APPENDIX C SUPPLEMENTARY FIGURES 33
參考文獻 REFERENCES
Antika, T. R., Chrestella, D. J., Ivanesthi, I. R., Rida, G. R. N., Chen, K. Y., Liu, F. G., Lee, Y. C., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2022). Gain of C-Ala enables AlaRS to target the L-shaped tRNAAla. Nucleic Acids Res, 50(4), 2190-2200. https://doi.org/10.1093/nar/gkac026
Calvo, S. E., Clauser, K. R., & Mootha, V. K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res, 44(D1), D1251-1257. https://doi.org/10.1093/nar/gkv1003
Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., & Wang, C. C. (2008). Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem, 283(45), 30699-30706. https://doi.org/10.1074/jbc.M805339200
Chang, C. P., Tseng, Y. K., Ko, C. Y., & Wang, C. C. (2012). Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res, 40(1), 314-322. https://doi.org/10.1093/nar/gkr724
Chen, S. J., Ko, C. Y., Yen, C. W., & Wang, C. C. (2009). Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem, 284(2), 818-827. https://doi.org/10.1074/jbc.M804378200
Chien, C. I., Chen, Y. W., Wu, Y. H., Chang, C. Y., Wang, T. L., & Wang, C. C. (2014). Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One, 9(4), e94659. https://doi.org/10.1371/journal.pone.0094659
Chiu, W. C., Chang, C. P., Wen, W. L., Wang, S. W., & Wang, C. C. (2010). Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol, 27(6), 1415-1424. https://doi.org/10.1093/molbev/msq025
Chong, Y. E., Guo, M., Yang, X. L., Kuhle, B., Naganuma, M., Sekine, S. I., Yokoyama, S., & Schimmel, P. (2018). Distinct ways of G:U recognition by conserved tRNA binding motifs. Proc Natl Acad Sci U S A, 115(29), 7527-7532. https://doi.org/10.1073/pnas.1807109115
Christian, B. E., & Spremulli, L. L. (2012). Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta, 1819(9-10), 1035-1054. https://doi.org/10.1016/j.bbagrm.2011.11.009
Feng, M., & Zhang, H. (2022). Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses, 14(3). https://doi.org/10.3390/v14030613
Figuccia, S., Degiorgi, A., Ceccatelli Berti, C., Baruffini, E., Dallabona, C., & Goffrini, P. (2021). Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci, 22(9). https://doi.org/10.3390/ijms22094524
Francklyn, C. S., & Mullen, P. (2019). Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J Biol Chem, 294(14), 5365-5385. https://doi.org/10.1074/jbc.REV118.002956
Garin, S., Levi, O., Cohen, B., Golani-Armon, A., & Arava, Y. S. (2020). Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel), 11(10). https://doi.org/10.3390/genes11101185
Giegé, R., & Eriani, G. (2014). Transfer RNA Recognition and Aminoacylation by Synthetases. In eLS. https://doi.org/10.1002/9780470015902.a0000531.pub3
Guo, M., Yang, X. L., & Schimmel, P. (2010). New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 11(9), 668-674. https://doi.org/10.1038/nrm2956
Hallberg, B. M., & Larsson, N. G. (2014). Making proteins in the powerhouse. Cell Metab, 20(2), 226-240. https://doi.org/10.1016/j.cmet.2014.07.001
Hou, Y. M. (1988). A simple structural feature is a major determinant of the identity of a transfer RNA. Nature, 333, 6.
Igloi, G. L. (2021). The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms. Journal of Molecular Evolution, 89(7), 484-493. https://doi.org/10.1007/s00239-021-10019-z
Joseph W. Chihade, K. H., Kiyotaka Shiba,and Paul Schimmel. (1998). Strong Selective Pressure To Use G:U To Mark an RNA Acceptor Stem for Alanine. Biochemistry, 37, 9.
Karin Musier-Forsyth, N. U., Stephen Scaringe, Jennifer Doudna, Rachel Green and Paul Schimmel. (1991). Specificity for Aminoacylation of an RNA Helix: An Unpaired, Exocyclic Amino Group in the Minor Groove. American Association for the Advancement of Science, 253, 3.
Kuhle, B., Chihade, J., & Schimmel, P. (2020). Relaxed sequence constraints favor mutational freedom in idiosyncratic metazoan mitochondrial tRNAs. Nat Commun, 11(1), 969. https://doi.org/10.1038/s41467-020-14725-y
Kumar, A., Aqvist, J., & Satpati, P. (2019). Principles of tRNA(Ala) Selection by Alanyl-tRNA Synthetase Based on the Critical G3.U70 Base Pair. ACS Omega, 4(13), 15539-15548. https://doi.org/10.1021/acsomega.9b01827
Ladoukakis, E. D., & Zouros, E. (2017). Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res (Thessalon), 24, 2. https://doi.org/10.1186/s40709-017-0060-4
Lane, N., & Martin, W. (2010). The energetics of genome complexity. Nature, 467(7318), 929-934. https://doi.org/10.1038/nature09486
Lee, Y. H., Lo, Y. T., Chang, C. P., Yeh, C. S., Chang, T. H., Chen, Y. W., Tseng, Y. K., & Wang, C. C. (2019). Naturally occurring dual recognition of tRNA(His) substrates with and without a universal identity element. RNA Biol, 16(9), 1275-1285. https://doi.org/10.1080/15476286.2019.1626663
Ling, J., Reynolds, N., & Ibba, M. (2009). Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol, 63, 61-78. https://doi.org/10.1146/annurev.micro.091208.073210
Liu, Y., & Chen, Y. (2020). Mitochondrial tRNA Mutations Associated With Essential Hypertension: From Molecular Genetics to Function. Front Cell Dev Biol, 8, 634137. https://doi.org/10.3389/fcell.2020.634137
Lluı´s Ribas de Pouplana, a. P. S. (1997). Reconstruction of Quaternary Structures of Class II tRNA synthetases by Rational Mutagenensis of a Conserved Domain. Biochemistry, 36(49), 8. https://doi.org/oi: 10.1021/bi971788
Manal A. Swairjo, X.-L. Y., Robert J. Skene,, Francella J. Otero, M. A. L., Duncan E. McRee,, & Lluis Ribas de Pouplana, a. P. S. (2004). Alanyl-tRNA Synthetase Crystal Structure and Design for Acceptor-Stem Recognition. Molecular Cell, 13, 13. https://doi.org/doi: 10.1016/s1097-2765(04)00126-1.
Marsh, E. K., & May, R. C. (2012). Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol, 78(7), 2075-2081. https://doi.org/10.1128/AEM.07486-11
Martha A.Lovato, J. W. C. a. P. S. (2001). Translocation within the acceptor helix of a major tRNA identity determinant. EMBO, 20, 8.
Masaaki Sokabe, T. O., Akiyoshi Nakamura, Keita Tokunaga, Osamu Nureki, Min Yao, and Isao Tanaka. (2009). The structure of alanyl-tRNA synthetase with editing domain. PNAS, 106, 6. https://doi.org/doi 10.1073 pnas.0904645106
Masahiro Naganumaa, S.-i. S., Ryuya Fukunagaa,and Shigeyuki Yokoyamaa. (2009). Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. PNAS, 106, 6. https://doi.org/doi 10.1073pnas.0901572106
Min Guo, Y. E. C., Kirk Beebe, Ryan Shapiro, Xiang-Lei Yang and Paul Schimmel. (2008). The C-Ala Domain Brings Together Editing and Aminoacylation Functions on One tRNA. Science AAAS, 325, 5. https://doi.org/140.115.227.5
Naganuma, M., Sekine, S., Chong, Y. E., Guo, M., Yang, X. L., Gamper, H., Hou, Y. M., Schimmel, P., & Yokoyama, S. (2014). The selective tRNA aminoacylation mechanism based on a single G*U pair. Nature, 510(7506), 507-511. https://doi.org/10.1038/nature13440
Neuenfeldt, A., Lorber, B., Ennifar, E., Gaudry, A., Sauter, C., Sissler, M., & Florentz, C. (2013). Thermodynamic properties distinguish human mitochondrial aspartyl-tRNA synthetase from bacterial homolog with same 3D architecture. Nucleic Acids Res, 41(4), 2698-2708. https://doi.org/10.1093/nar/gks1322
Olsson, C., & Swenson, J. (2019). The role of disaccharides for protein–protein interactions – a SANS study. Molecular Physics, 117(22), 3408-3416. https://doi.org/10.1080/00268976.2019.1640400
Park, S. J., & Schimmel, P. (1988). Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. Journal of Biological Chemistry, 263(32), 16527-16530. https://doi.org/10.1016/s0021-9258(18)37421-0
Rajendran, V., Kalita, P., Shukla, H., Kumar, A., & Tripathi, T. (2018). Aminoacyl-tRNA synthetases: Structure, function, and drug discovery. Int J Biol Macromol, 111, 400-414. https://doi.org/10.1016/j.ijbiomac.2017.12.157
Sakurai, M., Ohtsuki, T., & Watanabe, K. (2005). Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res, 33(5), 1653-1661. https://doi.org/10.1093/nar/gki309
Sissler, M., Gonzalez-Serrano, L. E., & Westhof, E. (2017). Recent Advances in Mitochondrial Aminoacyl-tRNA Synthetases and Disease. Trends Mol Med, 23(8), 693-708. https://doi.org/10.1016/j.molmed.2017.06.002
Sun, L., Song, Y., Blocquel, D., Yang, X. L., & Schimmel, P. (2016). Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A, 113(50), 14300-14305. https://doi.org/10.1073/pnas.1617316113
Wei, N., Zhang, Q., & Yang, X. L. (2019). Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem, 294(14), 5321-5339. https://doi.org/10.1074/jbc.REV118.002955
Xu, S., Schaack, S., Seyfert, A., Choi, E., Lynch, M., & Cristescu, M. E. (2012). High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol Biol Evol, 29(2), 763-769. https://doi.org/10.1093/molbev/msr243
Yasukawa, T., & Kang, D. (2018). An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem, 164(3), 183-193. https://doi.org/10.1093/jb/mvy058
Zeng, Q. Y., Peng, G. X., Li, G., Zhou, J. B., Zheng, W. Q., Xue, M. Q., Wang, E. D., & Zhou, X. L. (2019). The G3-U70-independent tRNA recognition by human mitochondrial alanyl-tRNA synthetase. Nucleic Acids Res, 47(6), 3072-3085. https://doi.org/10.1093/nar/gkz078
Zhang, H., Yang, X. L., & Sun, L. (2021). The uniqueness of AlaRS and its human disease connections. RNA Biol, 18(11), 1501-1511. https://doi.org/10.1080/15476286.2020.1861803
指導教授 王健家(Chien-Chia Wang) 審核日期 2022-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明