博碩士論文 108821614 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.191.5.166
姓名 恩達瑪(Undarmaa Tsengel)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Optimized CpG-oligodeoxynucleotide sequence for activation of Toll-like receptor 9 from companion animals)
相關論文
★ 結合TLR9與STING促進劑協同激活免疫反應並增強頭頸癌的抗腫瘤作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-28以後開放)
摘要(中) 類鐸受體9(TLR9)是哺乳類細胞上偵測細菌和病毒DNA的受體。此外,TLR9可以被人工合成的CpG-oligodeoxynucleotides(CpG-ODNs)激活。合成的CpG-ODN是一種有效的免疫激活劑。它們可以促進和加速抗原依賴和非依賴的免疫反應。由於其強大的免疫刺激活性,CpG¬¬¬-ODNs正被研究用於各種治療用途上,這些包括癌症治療和用作疫苗佐劑。CpG-ODN的結構特徵,包括其CpG-六聚體序列的類型、間距、核苷酸序列和長度,均能影響其免疫刺激活性和物種特異性的活性。狗和貓是人類最常見的伴侶動物。家狗和家貓與人類之間的共處是對彼此均有益處。由於相互之間的有利關係,伴侶動物已經演變成人類生活中一個不可或缺的部分,而近幾十年來,寵物的健康和福祉也越來越受到人們的關注。在本研究中,我們比較了狗和貓這二個TLR9的蛋白質結構,克隆了它們的TLR9 DNAs,及研究它們被CpG-ODNs激活的作用。狗和貓的TLR9的cDNA序列分別由3096個核苷酸和3093個核苷酸所組成。它們的蛋白質各有1032及1031個胺基酸,相似度為90.9%。我們使用TLR9的細胞激活試驗來研究了這兩個TLR9被各種序列不同的CpG-ODNs激活的情況。結果顯示,這兩個物種的TLR9被帶有GTCGTT六聚體序列的CpG-ODN大幅度的激活。進一步的研究顯示,5′-端的 TCG 核苷酸對 CpG-ODN 的活性起關鍵作用。另外,CpG-ODN的長度也是它們對狗和貓TLR9活性的關鍵因素。這項研究發現了優化CpG-ODNs作為伴侶動物免疫刺激劑的核苷酸序列特徵。
摘要(英) Toll-like receptor (TLR) 9 is a cellular receptor for detecting bacterial and viral DNA in mammalian species. In addition, this TLR is activated by synthetic CpG-oligodeoxynucleotides (CpG-ODNs), which are an effective activator for boosting and expediting antigen dependent and independent immune responses. Because of their potent immune stimulatory activities, the CpG-ODNs are continually developed for therapeutic purposes, including cancer therapy, and utilized as a vaccine adjuvant. The structural features of CpG-ODNs, including their CpG-hexamer motif characters, spacing between motifs, nucleotide sequence, and range of CpG-ODN, impact its immunostimulatory and species-specific activities. The most common human companions are dog and cat. Domestic dogs and cats continue to cohabit with humans, benefiting from one another. Companion animals have evolved into a permanent part of human life due to mutual interest, and pet health and wellbeing have received increasing attention in recent decades. This study characterized these dog and cat TLR9 proteins and cloned their cDNA for investigation of their interaction with CpG-ODNs. The dog and cat TLR9 cDNA consist of 3096 and 3093 nucleotides, which encode 1032 and 1031 amino acid residues with 90.9% of identity between these two TLR9 proteins. Activation of these two TLR9s by various CpG-ODNs was investigated using cell-based TLR9 activation assays. CpG-ODN with a GTCGTT motif immensely activated TLR9s from these two species. Further studies indicated that the 5’-end TCG nucleotides might play a vital role in the activities of the CpG-ODNs. The nucleotide length is also crucial in CpG-ODN to trigger dog and cat TLR9 activations. This study discovered nucleotide sequence features for optimizing CpG-ODNs as an immune stimulatory agent in cats and dogs.
關鍵字(中) ★ 類鐸受體
★ CpG寡脫氧核苷酸
★ 先天免疫
★ 疫苗佐劑
★ 免疫反應
關鍵字(英) ★ Toll-like receptor
★ CpG oligodeoxynucleotides
★ Innate immunity
★ Vaccine adjuvant
★ Immune response
論文目次 中文摘要 i
Abstract ii
Acknowledgment iii
Contents iv
Introduction 1
Materials and Methods 7
Materials 7
Cell culture 7
Dog and cat spleen first strand cDNA libraries 7
PCR amplification of dog and cat TLR9 cDNAs 8
Restriction enzyme digestion 9
Subcloning of dog and cat TLR9 cDNAs into the mammalian expression vector 9
cDNA sequence analysis 10
Nucleotide and protein sequence analysis 10
Evolution tree analysis 11
Extracellular domain analysis 11
TLR9 activation assay 11
Statistical analysis 11
Results 12
Characterization of dog and cat TLR9s 12
Phylogenetic analysis of TLR9 from mammalian species 13
Molecular cloning of dog and cat TLR9 cDNAs and construction of their expression vector 13
Activation of dog and cat TLR9s by CpG-ODNs with different type of CpG-hexamer-motif. 14
Concentration dependent activation of dog and cat TLR9s by CpG-ODNs 15
CpG-dideoxynucleotides in the CpG-2007 required for activation of dog and cat TLR9s. 16
Activation of dog and cat TLR9 by different concentrations of CpG-2007 and CpG-2007-GC1. 17
Activation of dog and cat TLR9s by CpG-ODNs with different nucleotide length derived from CpG-2722 17
Discussion 18
Conclusion 23
References 24
Figures 31
Figure 1. Protein sequence alignment of human, dog, and cat TLR9s. 32
Figure 2. Protein structures of TLR9 ectodomains 34
Figure 3. Phylogenetic and protein identity analysis of mammalian TLR9s 35
Figure 4. Molecular cloning of dog TLR9 cDNA and construction of its expression vector 36
Figure 5. Molecular cloning of cat TLR9 cDNA and construction of its expression vector 37
Figure 6. Mammalian expression vector of dog TLR9 and cat TLR9 38
Figure 7. Schematic of TLR9 mediated CpG-ODN activation and luciferase assay procedure 39
Figure 8. Activation of human, dog, and cat TLR9s with CpG-ODNs containing distinct CpG-hexamer motif 41
Figure 9. Activation of dog and cat TLR9s by CpG-ODNs with different concentrations 43
Figure 10. CpG-dideoxynucleotides in the CpG-2007 required for activation of dog and cat TLR9s. 45
Figure 11. Concentration-dependent activation of dog and cat TLR9s by CpG-2007 and CpG-2007GC1. 47
Figure 12. Activation of dog and cat TLR9s by CpG-ODNs with different length derived from CpG-2007. 49
Tables 51
Table 1. Identification of TLR9 proteins from different species. 52
Supplementary figures 53
Supplementary figure 1. Nucleotide sequence and amino acid sequence of dog TLR9 54
Supplementary figure 2. Nucleotide sequence and amino acid sequence of cat TLR9 56
Supplementary figure 3. Protein sequence alignment of dog and cat TLR9s. 58
參考文獻 1. Piret, J. & Boivin, G. Pandemics Throughout History. Front Microbiol 11, 631736 (2020).
2. Kogut, M.H., Lee, A. & Santin, E. Microbiome and pathogen interaction with the immune system. Poultry Sci 99, 1906-1913 (2020).
3. Netea, M.G. et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol 20, 375-388 (2020).
4. Paludan, S.R., Pradeu, T., Masters, S.L. & Mogensen, T.H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 21, 137-150 (2021).
5. Chaplin, D.D. Overview of the immune response. J Allergy Clin Immunol 125, S3-23 (2010).
6. Nicholson, L.B. The immune system. Essays Biochem 60, 275-301 (2016).
7. Dempsey, P.W., Vaidya, S.A. & Cheng, G. The art of war: Innate and adaptive immune responses. Cellular and Molecular Life Sciences 60, 2604-2621 (2003).
8. Kabelitz, D. & Medzhitov, R. Innate immunity - cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19, 1-3 (2007).
9. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343-353 (2015).
10. Jain, A. & Pasare, C. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J Immunol 198, 3791-3800 (2017).
11. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
12. Palm, N.W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunological Reviews 227, 221-233 (2009).
13. Li, D.Y. & Wu, M.H. Pattern recognition receptors in health and diseases. Signal Transduct Tar 6 (2021).
14. Chuang, T.H. & Ulevitch, R.J. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Bba-Gene Struct Expr 1518, 157-161 (2001).
15. Imler, J.L. & Hoffmann, J.A. Toll receptors in innate immunity. Trends Cell Biol 11, 304-311 (2001).
16. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680 (2001).
17. Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17, 338-344 (2005).
18. Underhill, D.M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811-815 (1999).
19. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933-940 (2001).
20. Takeuchi, O. et al. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10-14 (2002).
21. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001).
22. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282, 2085-2088 (1998).
23. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103 (2001).
24. Chuang, T.H. & Ulevitch, R.J. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11, 372-378 (2000).
25. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Sousa, C.R.E. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531 (2004).
26. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526-1529 (2004).
27. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 (2000).
28. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. P Natl Acad Sci USA 98, 9237-9242 (2001).
29. Chuang, T.H., Lee, J., Kline, L., Mathison, J.C. & Ulevitch, R.J. Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol 71, 538-544 (2002).
30. Trivedi, S. & Greidinger, E.L. Endosomal Toll-like receptors in autoimmunity: mechanisms for clinical diversity. Therapy 6, 433-442 (2009).
31. Averett, D.R., Fletcher, S.P., Li, W., Webber, S.E. & Appleman, J.R. The pharmacology of endosomal TLR agonists in viral disease. Biochem Soc Trans 35, 1468-1472 (2007).
32. Lee, S.M. et al. Recognition of Double-Stranded RNA and Regulation of Interferon Pathway by Toll-Like Receptor 10. Front Immunol 9, 516 (2018).
33. Botos, I., Segal, D.M. & Davies, D.R. The structural biology of Toll-like receptors. Structure 19, 447-459 (2011).
34. Jin, M.S. & Lee, J.O. Structures of the toll-like receptor family and its ligand complexes. Immunity 29, 182-191 (2008).
35. O′Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364 (2007).
36. Kawai, T. & Akira, S. TLR signaling. Semin Immunol 19, 24-32 (2007).
37. Fitzgerald, K.A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198, 1043-1055 (2003).
38. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507 (2004).
39. Lee, M.S. & Min, Y.J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76, 447-480 (2007).
40. O′Neill, L.A.J., Bryant, C.E. & Doyle, S.L. Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer. Pharmacol Rev 61, 177-197 (2009).
41. Anwar, M.A., Shah, M., Kim, J. & Choi, S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 39, 1053-1090 (2019).
42. Dowling, J.K. & Mansell, A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol 5 (2016).
43. Krieg, A.M. et al. Cpg Motifs in Bacterial-DNA Trigger Direct B-Cell Activation. Nature 374, 546-549 (1995).
44. Roman, M. et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 3, 849-854 (1997).
45. Razin, A. & Friedman, J. DNA methylation and its possible biological roles. Prog Nucleic Acid Res Mol Biol 25, 33-52 (1981).
46. Wagner, H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 73, 329-368 (1999).
47. Stein, C.A., Subasinghe, C., Shinozuka, K. & Cohen, J.S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16, 3209-3221 (1988).
48. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709-760 (2002).
49. Gursel, M., Verthelyi, D., Gursel, I., Ishii, K.J. & Klinman, D.M. Differential and competitive activation of human immune cells by distinct classes of CpG oligodeoxynucleotide. J Leukocyte Biol 71, 813-820 (2002).
50. Pisetsky, D.S. Mechanisms of immune stimulation by bacterial DNA. Springer Semin Immun 22, 21-33 (2000).
51. Yamamoto, S., Yamamoto, T. & Tokunaga, T. The discovery of immunostimulatory DNA sequence. Springer Semin Immun 22, 11-19 (2000).
52. Chuang, T.H., Lai, C.Y., Tseng, P.H., Yuan, C.J. & Hsu, L.C. Development of CpG-Oligodeoxynucleotides for Effective Activation of Rabbit TLR9 Mediated Immune Responses. Plos One 9 (2014).
53. Jurk, M. & Vollmer, J. Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. Biodrugs 21, 387-401 (2007).
54. Vollmer, J. & Krieg, A.M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliver Rev 61, 195-204 (2009).
55. Iho, S., Maeyama, J. & Suzuki, F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum Vacc Immunother 11, 755-760 (2015).
56. Kayraklioglu, N., Horuluoglu, B. & Klinman, D.M. CpG Oligonucleotides as Vaccine Adjuvants. Methods Mol Biol 2197, 51-85 (2021).
57. Delany, I., Rappuoli, R. & De Gregorio, E. Vaccines for the 21st century. EMBO Mol Med 6, 708-720 (2014).
58. Plotkin, S.A. Vaccines: past, present and future. Nat Med 11, S5-11 (2005).
59. Manuja, A., Manuja, B.K., Kaushik, J., Singha, H. & Singh, R.K. Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species. Immunopharm Immunot 35, 535-544 (2013).
60. Mutwiri, G. TLR9 agonists: Immune mechanisms and therapeutic potential in domestic animals. Vet Immunol Immunop 148, 85-89 (2012).
61. Ioannou, X.P. et al. Safety of CpG oligodeoxynucleotides in veterinary species. Antisense Nucleic A 13, 157-167 (2003).
62. Lai, C.Y., Yu, G.Y., Luo, Y.P., Xiang, R. & Chuang, T.H. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 10 (2019).
63. Champion, C.R. Heplisav-B: A Hepatitis B Vaccine With a Novel Adjuvant. Ann Pharmacother 55, 783-791 (2021).
64. Hyer, R.N. & Janssen, R.S. Immunogenicity and safety of a 2-dose hepatitis B vaccine, HBsAg/CpG 1018, in persons with diabetes mellitus aged 60-70 years. Vaccine 37, 5854-5861 (2019).
65. Friesinger, J.G., Birkeland, B. & Thorod, A.B. Human-Animal Relationships in Supported Housing: Animal Atmospheres for Mental Health Recovery. Front Psychol 12 (2021).
66. Brooks, H.L. et al. The power of support from companion animals for people living with mental health problems: a systematic review and narrative synthesis of the evidence. Bmc Psychiatry 18 (2018).
67. Cowie, R.H. et al. Workshop on research priorities for management and treatment of angiostrongyliasis(1). Emerg Infect Dis 18, e1 (2012).
68. Pereira, A. et al. Parasitic zoonoses associated with dogs and cats: a survey of Portuguese pet owners′ awareness and deworming practices. Parasit Vectors 9, 245 (2016).
69. Esch, K.J. & Petersen, C.A. Transmission and epidemiology of zoonotic protozoal diseases of companion animals. Clin Microbiol Rev 26, 58-85 (2013).
70. Roth, J.A. & Spickler, A.R. Duration of immunity induced by companion animal vaccines. Anim Health Res Rev 11, 165-190 (2010).
71. Horzinek, M.C. Vaccine use and disease prevalence in dogs and cats. Vet Microbiol 117, 2-8 (2006).
72. Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599 (2007).
73. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31, 3381-3385 (2003).
74. Reevy, G.M. & Delgado, M.M. Are emotionally attached companion animal caregivers conscientious and neurotic? Factors that affect the human-companion animal relationship. J Appl Anim Welf Sci 18, 239-258 (2015).
75. Walsh, F. Human-animal bonds I: the relational significance of companion animals. Fam Process 48, 462-480 (2009).
76. Brooks, H., Rushton, K., Lovell, K., McNaughton, R. & Rogers, A. ′He′s my mate you see′: a critical discourse analysis of the therapeutic role of companion animals in the social networks of people with a diagnosis of severe mental illness. Med Humanit 45, 326-334 (2019).
77. Chur-Hansen, A., Stern, C. & Winefield, H. Gaps in the evidence about companion animals and human health: some suggestions for progress. Int J Evid Based Healthc 8, 140-146 (2010).
78. Reperant, L.A. et al. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals. J Comp Pathol 155, S41-53 (2016).
79. Purewal, R. et al. Companion Animals and Child/Adolescent Development: A Systematic Review of the Evidence. Int J Environ Res Public Health 14 (2017).
80. Day, M.J. Pet-Related Infections. Am Fam Physician 94, 794-802 (2016).
81. Dodds, W.J. Early Life Vaccination of Companion Animal Pets. Vaccines (Basel) 9 (2021).
82. Day, M.J. Immune system development in the dog and cat. J Comp Pathol 137 Suppl 1, S10-15 (2007).
83. Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5, 471-484 (2006).
84. Kindrachuk, J. et al. Activation and regulation of toll-like receptor 9: CpGs and beyond. Mini Rev Med Chem 8, 590-600 (2008).
85. Chuang, Y.C. et al. Adjuvant Effect of Toll-Like Receptor 9 Activation on Cancer Immunotherapy Using Checkpoint Blockade. Front Immunol 11 (2020).
86. Vollmer, J. et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34, 251-262 (2004).
87. Samulowitz, U. et al. A Novel Class of Immune-Stimulatory CpG Oligodeoxynucleotides Unifies High Potency in Type I Interferon Induction with Preferred Structural Properties. Oligonucleotides 20, 93-101 (2010).
88. Liu, J. et al. A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition. Mol Immunol 47, 1083-1090 (2010).
89. Lai, C.Y. et al. TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7. Vaccine 32, 5593-5599 (2014).
指導教授 莊宗顯 王健家(Tsung-Hsien Chuang Chien-Chia Wang) 審核日期 2022-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明