博碩士論文 108825601 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:
姓名 王行葦(Wang, Hangwei)  查詢紙本館藏   畢業系所 認知與神經科學研究所
(Exploring behavioral and neural rhythms of visual working memory with an adaptive time-frequency analysis)
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 利用跨顱磁刺激探討主動式注意力攫取的神經機制
★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討
★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?
★ 學齡前階段孩童眼動抑制能力的發展和特性★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展
★ 6歲孩童與成人在數字和具體數量上的自動化處理★ 期望效果之影響與可能的神經機制
★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色
★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-30以後開放)
摘要(中) 先前的一些研究已表明,節律性或許是在認知過程中普遍存在的特征。例如在對注意力採樣(Fiebelkorn等人,2013)和聽覺工作記憶(Wöstmann等人,2020)等認知過程的研究中,均發現參與者的行為表現隨著刺激呈現的時間間隔改變存在節律性變化。這些結果也暗示,行為表現以及與之相關的神經活動中的節律成分可能是各種認知任務中的一般現象。以上結果引出了我們的問題:這種節律性特征是否也存在於視覺工作記憶過程中;如果其存在,當有著多個需要記憶的對象時其會如何表現;以及何為與其相關的神經生理學特徵。
在目前的研究中,我們設計了一個視覺工作記憶顏色回憶任務(Zhang & Luck,2008)的變體。參與者們需要按順序記憶兩個不同物體的顏色,並隨後在一個顏色環上盡可能精確地選出對於其中一個目標物體他們所記憶的顏色。兩個對象的呈現之間的時間間隔會依實驗設計而改變以探索其對參與者們記憶能力的影響。我們使用了具有自適應性的希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)方法來探索參與者的行為和腦電圖(EEG)資料中的節律性成分。我們發現,在參與者們對於第一個呈現的物體的記憶精度隨兩個物體呈現的時間間隔改變而變化的波動中存在顯著的α波段(9~10 Hz)節奏分量。我們也發現事件相關模式(event-related mode, ERM)的某些特徵與行為表現的波動表現出顯著的相關性,包括在第二個物體呈現前的α波段成分和以及在第二個物體呈現之後產生的N1成分的振幅。這些結果表明,在視覺工作記憶的行為學以及腦電圖結果的波動中存在節律性成分,暗示或許當記憶的對象以特定的節律呈現時,參與者的記憶性能可以得到改善。這一研究也驗證了HHT方法用於分析行為和電生理資料的節律性特征的可行性。
摘要(英) Previous studies have demonstrated that rhythmic components were pervasive in cognitive processes, such as attentional sampling (Fiebelkorn et al., 2013) and auditory working memory (Wöstmann et al., 2020). These results demonstrated that rhythmic components in behavioral performance and related neural activity might be a general phenomenon in a wide range of cognitive tasks. And it leads to our questions: does this rhythm also exist in the visual working memory process; if affirmative, how does it work with multiple objects which need to be encoded; and what the neurophysiological features are related to it.
In the current study, I designed a variant of the visual working memory color recall task (Zhang & Luck, 2008). Participants were required to memorize the colors of two objects and select the color of one of the objects on a color wheel after a period of retention time. The inter-stimulus interval (ISI) between the objects was variable to detect its influence on their memory performance. An adaptive Hilbert-Huang Transform (HHT) method was applied to explore the rhythmic components in both behavioral data and electrophysiological activity. In the behavioral data, a significant alpha band (9~10 Hz) rhythmic component was detected in the fluctuation of the memory precision of the first object which varied with the change of ISI. In addition, several features of event-related mode (ERM) showed significant correlations with behavioral fluctuation, including the alpha-band EEG component before the onset of the second object and the amplitude of N1 component after the onset of the second object. These results demonstrated the existence of rhythmic components in the behavioral and neural fluctuation of visual working memory, indicating that memory performance might be improved when the targets were presented with specific rhythms. The current study also verified the feasibility of the HHT method in analyzing the rhythmic features of behavioral and electrophysiological data.
關鍵字(中) ★ 節律性
★ 視覺工作記憶
★ 顏色回憶作業
★ 腦電圖
★ 希爾伯特-黃轉換
★ 事件相關模式
關鍵字(英) ★ rhythm
★ visual working memory
★ color recall task
★ Hilbert-Huang Transform
★ event-related mode
論文目次 摘 要 i
Abstract iii
致 謝 v
Table of contents vi
List of Figures ix
Chapter 1: Introduction 1
1.1 Rhythms in the cognitive process 1
1.1.1 Rhythms in cognition 1
1.1.2 The electrophysiology features of cognition rhythms 3
1.2 Visual working memory 4
1.3 Research aims 6
Chapter 2: Method 8
2.1 Participants 8
2.2 Apparatus and Stimulus materials 8
2.2.1 Apparatus 8
2.2.2 Stimuli and Materials 8
2.3 Procedure 9
2.4 EEG recording 13
2.5 Adaptive time-frequency decomposition 13
2.5.1 Empirical mode decomposition 14
2.5.2 Hilbert spectral analysis 15
2.6 Data Analysis 17
2.6.1 Behavioral data analysis 17 The mixture model analysis 17 Time-frequency decomposition of behavioral data 19
2.6.2 EEG analysis 21 EEG data preprocessing 21 Time-frequency decomposition of EEG data 23
2.6.3 Event-related mode analysis 24
2.6.4 Statistic and correlation analysis 25 Behavioral data analyses 25 EEG data analyses 25 Correlation analyses between ERM and behavioral data 28
Chapter 3: Results 35
3.1 Behavioral results 35
3.2 EEG results 40
3.3 ERM and correlation analyses results 42
Chapter 4: Discussions 47
Reference 52
參考文獻 Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208.

Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press.

Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of vision, 9(10), 7-7.

Boksem, M. A., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental fatigue on attention: an ERP study. Cognitive brain research, 25(1), 107-116.

Chuang, K. Y., Chen, Y. H., Balachandran, P., Liang, W. K., & Juan, C. H. (2019). Revealing the electrophysiological correlates of working memory-load effects in symmetry span task with HHT method. Frontiers in psychology, 10, 855.

Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge University Press.

Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H., & Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection performance in humans. Cognitive brain research, 20(3), 376-383.

Fiebelkorn, I.C. et al. (2018) A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron, 99, 842–853

Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention. Trends in cognitive sciences, 23(2), 87-101.

Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23(24), 2553-2558.

Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience letters, 375(1), 64-68.

Helfrich, R. F., Fiebelkorn, I. C., Szczepanski, S. M., Lin, J. J., Parvizi, J., Knight, R. T., & Kastner, S. (2018). Neural mechanisms of sustained attention are rhythmic. Neuron, 99(4), 854-865.

Hsu, C. H., Lee, C. Y., & Liang, W. K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. Journal of Neuroscience Methods, 264, 78-85.

Jaiswal, Satish, et al. (2019). Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Social cognitive and affective neuroscience, 14(6), 645-655.

Liang, Wei-Kuang, et al. (2021). Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience, 460, 69-87.

Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., & Juan, C. H. (2014). Revealing the brain′s adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. Neuroimage, 90, 218-234.

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG-and MEG-data. Journal of neuroscience methods, 164(1), 177-190.

Michel, R., Dugué, L., & Busch, N. A. (2021). Distinct contributions of alpha and theta rhythms to perceptual and attentional sampling. European Journal of Neuroscience.

Peters, B., Rahm, B., Kaiser, J., & Bledowski, C. (2018). Attention fluctuates rhythmically between objects in working memory. Journal of Vision, 18(10), 186-186.

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., ... & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European journal of neuroscience, 22(11), 2917-2926.

Scheeringa, R., Mazaheri, A., Bojak, I., Norris, D. G., & Kleinschmidt, A. (2011). Modulation of visually evoked cortical FMRI responses by phase of ongoing occipital alpha oscillations. Journal of Neuroscience, 31(10), 3813-3820.

Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011, May). A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4144-4147). IEEE.

Tsai, C. C., & Liang, W. K. (2021). Event-related components are structurally represented by intrinsic event-related potentials. Scientific reports, 11(1), 1-14.

Van Dijk, H., Schoffelen, J. M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816-1823.

VanRullen, R., Carlson, T., & Cavanagh, P. (2007). The blinking spotlight of attention. Proceedings of the National Academy of Sciences, 104(49), 19204-19209.

Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190-203.

Williams, N., Nasuto, S. J., & Saddy, J. D. (2011). Evaluation of empirical mode decomposition for event-related potential analysis. EURASIP Journal on Advances in Signal Processing, 2011, 1-11.

Wöstmann, M., Lui, T. K. Y., Friese, K. H., Kreitewolf, J., Naujokat, M., & Obleser, J. (2020). The vulnerability of working memory to distraction is rhythmic. Neuropsychologia, 146, 107505.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235.
指導教授 阮啟弘(Juan, Chi-Hung) 審核日期 2022-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明