博碩士論文 108826001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.214.216.26
姓名 李柏儒(Po-Ju Lee)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 含EBV病毒產物之外泌小體經由活化纖維母細胞重塑腫瘤微環境
(EBV Products-containing Exosomes Remodel the Tumor Microenvironment by Activating Stromal Fibroblasts)
相關論文
★ 靜磁場於癌細胞的生物效應★ 白血病抑制因子活化蛋白酶激活受體1進而促進鼻咽癌細胞的遷移
★ 白血病抑制因子促進Gα12介導的鼻咽癌細胞遷移能力
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-12-31以後開放)
摘要(中) 第三型鼻咽癌與EBV感染有密切關聯且此類型腫瘤組織常有大量免疫細胞浸潤。許多文獻已證實浸潤於鼻咽癌的免疫細胞與癌細胞的交互作用會影響病人預後。另一方面,腫瘤中的纖維化組織與較差的病人預後相關。然而,癌細胞與周邊纖維母細胞之間的相互作用機轉仍待深入探討。在本研究中,我們發現EBV+-鼻咽癌細胞所釋出的外泌小體含EBV潛伏膜蛋白-1(LMP1)及纖維化標誌分子FAP。此外泌小體可被周圍基質環境中的纖維母細胞吞噬,刺激纖維母細胞產生形態上的變化與收縮力的增強,並且活化纖維母細胞進而重塑微環境。轉錄體分析及經QPCR與ELISA驗證結果顯示鼻咽癌的外泌小體明顯影響與組織纖維化功能相關的基因群表現及促發炎細胞激素(IL-6, IL-8, MCP-1)的釋放。此外,細胞實驗結果顯示外泌小體的刺激使纖維母細胞的標誌FAP與活化型YAP1蛋白及其調控的下游分子(CYR61, CTGF, IGFBP3)表現量上升。小鼠腫瘤異體移植實驗結果發現被外泌小體刺激的纖維母細胞會促進腫瘤生長與微環境纖維化。同時,在小鼠腫瘤組織切片染色結果顯示外泌小體刺激使活化型YAP1在間質纖維母細胞中表現量上升,且與FAP表現有正相關性r=0.7671, p=0.0001, Spearman correlation test)。於鼻咽癌病人切片染色結果亦顯示活化型YAP1與FAP的正相關性(r=0.3749, p=0.0157, Spearman correlation test)。這意味著YAP1對調控外泌小體所引發的纖維母細胞活化扮演著重要的角色。使用YAP1的抑制劑Saracatinib 和Verteporfin於纖維母細胞可以有效降低因外泌小體的刺激而誘發的功能性變化,且可抑制纖維母細胞對癌細胞的促生長效應。
綜合以上結果,本研究闡明腫瘤細胞藉由分泌外泌小體與纖維母細胞進行交互作用而導致腫瘤組織趨向一個有利於癌症進展的微環境,提供以YAP1抑制劑瓦解鼻咽腫瘤微環境而達到抑制癌細胞生長的理論基礎。
摘要(英) Type Ш nasopharyngeal carcinoma is closely associated with EBV-infection and characterized by heavy lymphocyte infiltration. It is recognized that interactions between cancer cells and immune cells have profound effects on patients’ outcomes. Further, fibrotic response in the tumor tissue is correlated with poorer prognosis in NPC patients. Nevertheless, the intercommunications between stromal fibroblasts and NPC cells remain relatively unexplored. In the present study, we found that exosomes derived from EBV+NPC cells contained EBV-encoded latent membrane protein 1 (LMP1) and FAPprotein. Treating fibroblasts derived from NPC biopsies with these exosomes induced morphological changes and an enhanced contraction ability. Results of transcriptomic analyses revealed that exosome stimulation in fibroblasts predominantly affected expression of genes involved in function of fibrotic response. Fibrosis-associated genes such as IL-6, IL-8, and MCP-1 were validated by QPCR and ELISA assays. Exosome stimulation induced fibroblast activation as evidenced by increased expressions of FAP active YAP1, and YAP1 downstream molecules (CYR61, CTGF, IGFBP3). Results of mouse xenografted model demonstrated that exosome-stimulated fibroblasts promoted tumor growth. Immunohistochemical data showed a positive correlation between expressions of FAP and active YAP1 (r=0.7671 and p=0.0001, Spearman correlation test). An enhanced fibrotic response was noticed within exosome-treated tumors. The association among active YAP1, FAP, and fibrotic response were also found in human NPC biopsies (r=0.3749 and p=0.0157, Spearman correlation test). Targeting YAP1 by utilizing Saracatinib and Verteporfin markedly blunted EBV exosomes-mediated fibroblast activation and functional effects.
Collectively, our data provide evidence to better understand the interactions among EBV,
NPC cells, and stromal fibroblasts via exosomal transmission, which facilitates the establishment of a pro-tumor microenvironment. Furthermore, our data suggest that the use of YAP1 inhibitors might be a potentially effective strategy in treating NPC with desmoplastic response within tumors.
關鍵字(中) ★ EBV病毒
★ 外泌小體
★ 纖維母細胞
★ 腫瘤微環境
關鍵字(英) ★ EBV
★ exosomes
★ fibroblast
★ tumor microenvironment
論文目次 中文摘要 ................................................................................................................................ i
英文摘要 ................................................................................................................................ ii
誌謝 ................................................................................................................................ iii
目錄 ................................................................................................................................ iv
圖目錄 ................................................................................................................................ viii
表目錄 ................................................................................................................................ ix
符號說明 ................................................................................................................................ x
Chapter 1 Introduction............................................................................................................. 1
1-1 Epstein-Barr Virus (EBV) ..................................................................................... 1
1-1-1 EBV-positive Nasopharyngeal Carcinoma (NPC)................................................. 1
1-2 Exosome................................................................................................................. 2
1-2-1 EBV-related Exosome............................................................................................ 4
1-3 Tumor Microenvironment....................................................................................... 4
1-3-1 Cancer-associated Fibroblasts (CAFs).................................................................... 5
1-3-2 CAFs in the NPC TME........................................................................................... 6
1-4 Fibroblast Activation Protein (FAP)....................................................................... 7
1-5 Yes-associated Protein 1 (YAP1) .......................................................................... 8
1-5-1 Role of YAP1 in fibroblasts................................................................................... 9
Chapter 2 Materials and Methods............................................................................................ 10
2-1 Cell culture.............................................................................................................. 10
2-2 Exosome isolation................................................................................................... 10
2-3 Electron Microscopy (EM) analysis....................................................................... 10
2-4 Exosome labelling................................................................................................... 11
2-5 Live cell imaging.................................................................................................... 11
2-6 Immunocytochemistry (ICC).................................................................................. 12
2-7 Western blotting...................................................................................................... 12
2-8 Collagen contraction assay..................................................................................... 13
2-9 Drug toxicity assay................................................................................................. 13
2-10 Immunohistochemistry (IHC)................................................................................. 14
2-11 Transcriptomic analysis.......................................................................................... 15
2-12 Quantitative polymerase reaction (QPCR) ............................................................ 15
2-13 Enzyme-Linked Immunosorbent Assay (ELISA) .................................................. 16
2-14 Animal studies........................................................................................................ 16
2-15 Statistics.................................................................................................................. 17
Chapter 3 Results…………………......................................................................................... 18
3-1 Fibroblasts identified in NPC tissue sections......................................................... 18
3-2 Uptake of EBV products-containing exosomes in primary fibroblasts.................. 18
3-3 EBV product-containing exosomes alter morphology in fibroblasts...................... 19
3-3-1 EBV product-containing exosomes enhance cell contraction ability in fibroblasts 19
3-4 Exosomes modulate fibrotic-associated pathways in primary fibroblasts.............. 20
3-4-1 EBV product-containing exosomes upregulate fibrosis-associated genes............. 20
3-5 EBV products-containing exosomes induce fibroblast activation.......................... 21
3-5-1 EBV products-containing exosomes promote activation of YAP1......................... 22
3-6
Exosome-stimulated fibroblasts enhance tumor growth and fibrotic response in
mouse xenografted tumor model............................................................................
22
3-7 Positive correlation between nuclear YAP1 and FAPexpression in NPC tumor samples................................................................................................................... 23
3-8 Cytotoxicity of YAP1 inhibitors in primary fibroblasts.......................................... 23
3-8-1 Inhibition of YAP1 blunts EBV products-containing exosome-mediated effects
on fibroblasts.......................................................................................................... 24
3-9 Blockade of YAP1 activity reduces fibroblast activation....................................... 24
Chapter 4 Conclusions and discussions................................................................................... 26
4-1 Exosomal content in EBV-related exosomes.......................................................... 26
4-2 The effects of EBV-related exosomes on other cell populations in the NPC TME 27
4-3 The impact of exosome-stimulated fibroblasts on the NPC TME.......................... 27
4-4 Exosome-mediated upregulation of other fibroblast activation markers................ 28
4-5 Future perspectives................................................................................................. 29
Chapter 5 Figures and Tables.................................................................................................. 30
Figure 1 IHC analyses of NPC tumor sections....................................................................... 30
Figure 2 Exosome visualization and uptake in primary fibroblasts....................................... 31
Figure 3 HK1EBV exosomes contains EBV-encoded LMP1................................................ 32
Figure 4 HK1EBV exosomes alter fibroblast morphology.................................................... 33
Figure 5 HK1EBV exosomes enhance cell contractility in fibroblasts.................................. 34
Figure 6 HK1EBV exosomes upregulate fibrosis-associated pathways in fibroblasts........... 35
Figure 7 HK1EBV exosomes upregulate genes involving in functions of fibrosis................ 36
Figure 8 HK1EBV exosomes enhance expression of fibrosis-associated genes.................... 37
Figure 9 HK1EBV exosomes induce fibroblast activation.................................................... 38
Figure 10 HK1EBV exosomes promote activation of YAP1................................................... 39
Figure 11 HK1EBV exosomes increase YAP1-targeted gene expression............................... 40
Figure 12 HK1EBV exosome-treated fibroblasts promote tumor growth............................... 41
Figure 13 YAP1 plays a critical role in exosome-mediated tissue remodeling........................ 42
Figure 14 IHC analysis of nuclear YAP1 and FAPexpression in NPC tumor sections......... 43
Figure 15 Determination of saracatinib cytotoxicity in fibroblasts.......................................... 44
Figure 16 Determination of verteporfin cytotoxicity in fibroblasts......................................... 45
Figure 17 Saracatinib suppresses HK1EBV exosome-mediated biological effects................. 46
Figure 18 Verteporfin diminishes HK1EBV exosome-mediated biological functions............ 47
Figure 19 Saracatinib reduces HK1EBV exosome-induced fibroblast activation................... 48
Figure 20 Verteporfin represses HK1EBV exosome-mediated fibroblast activation.............. 49
Figure 21 Proposed model of EBV products-containing exosomes-mediated fibroblast activation in NPC TME.......................................................................................... 50
Table 1 Primer information for QPCR analysis in primary fibroblasts................................. 51
References ................................................................................................................................ 52
參考文獻 1. Young LS, and Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4(10):757-68.
2. Kieff E, Given D, Powell AL, King W, Dambaugh T, and Raab-Traub N. Epstein-Barr virus: structure of the viral DNA and analysis of viral RNA in infected cells. Biochim Biophys Acta. 1979;560(3):355-73.
3. Taylor GS, Long HM, Brooks JM, Rickinson AB, and Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol. 2015;33:787-821.
4. Ressing ME, van Gent M, Gram AM, Hooykaas MJ, Piersma SJ, and Wiertz EJ. Immune Evasion by Epstein-Barr Virus. Curr Top Microbiol Immunol. 2015;391:355-81.
5. Hatton OL, Harris-Arnold A, Schaffert S, Krams SM, and Martinez OM. The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunologic Research. 2014;58(2-3):268-76.
6. Skalsky RL, and Cullen BR. EBV Noncoding RNAs. Curr Top Microbiol Immunol. 2015;391:181-217.
7. Abbott RJ, Pachnio A, Pedroza-Pacheco I, Leese AM, Begum J, Long HM, et al. Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. J Virol. 2017;91(21).
8. Iizasa H, Nanbo A, Nishikawa J, Jinushi M, and Yoshiyama H. Epstein-Barr Virus (EBV)-associated gastric carcinoma. Viruses. 2012;4(12):3420-39.
9. Young LS, and Dawson CW. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 2014;33(12):581-90.
10. Cai TT, Ye SB, Liu YN, He J, Chen QY, Mai HQ, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathog. 2017;13(7):e1006503.
11. Tsao SW, Tsang CM, and Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732).
12. Chen H, Hutt-Fletcher L, Cao L, and Hayward SD. A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein-Barr virus. J Virol. 2003;77(7):4139-48.
13. Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, et al. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget. 2014;5(23):12189-202.
14. Iwakiri D, Sheen TS, Chen JY, Huang DP, and Takada K. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24(10):1767-73.
15. Liu SC, Tsang NM, Chiang WC, Chang KP, Hsueh C, Liang Y, et al. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J Clin Invest. 2013;123(12):5269-83.
16. Münz C. Current Topics in Microbiology and Immunology,. Cham: Springer International Publishing : Imprint: Springer,; 2015:1 online resource (VI, 505 pages).
17. Tsang CM, Deng W, Yip YL, Zeng MS, Lo KW, and Tsao SW. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. Chinese Journal of Cancer. 2014;33(11):549-55.
18. Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X, et al. Epstein-Barr virus nuclear antigen 1 (EBNA1) protein induction of epithelial-mesenchymal transition in nasopharyngeal carcinoma cells. Cancer. 2014;120(3):363-72.
19. Wu L, Li C, and Pan L. Nasopharyngeal carcinoma: A review of current updates. Exp Ther Med. 2018;15(4):3687-92.
20. Zheng H, Li LL, Hu DS, Deng XY, and Cao Y. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol. 2007;4(3):185-96.
21. Perri F, Della Vittoria Scarpati G, Caponigro F, Ionna F, Longo F, Buonopane S, et al. Management of recurrent nasopharyngeal carcinoma: current perspectives. Onco Targets Ther. 2019;12:1583-91.
22. Vokes EE, Liebowitz DN, and Weichselbaum RR. Nasopharyngeal carcinoma. Lancet. 1997;350(9084):1087-91.
23. Houali K, Wang X, Shimizu Y, Djennaoui D, Nicholls J, Fiorini S, et al. A new diagnostic marker for secreted Epstein-Barr virus encoded LMP1 and BARF1 oncoproteins in the serum and saliva of patients with nasopharyngeal carcinoma. Clin Cancer Res. 2007;13(17):4993-5000.
24. Stevens SJ, Verkuijlen SA, Hariwiyanto B, Harijadi, Paramita DK, Fachiroh J, et al. Noninvasive diagnosis of nasopharyngeal carcinoma: nasopharyngeal brushings reveal high Epstein-Barr virus DNA load and carcinoma-specific viral BARF1 mRNA. Int J Cancer. 2006;119(3):608-14.
25. Teow S-Y, and Peh S-C. Novel Implications of Exosomes in Diagnosis and Treatment of Cancer and Infectious Diseases. 2017.
26. Doyle LM, and Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells-Basel. 2019;8(7).
27. Zhang Y, Liu Y, Liu H, and Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.
28. Gonda A, Kabagwira J, Senthil GN, and Wall NR. Internalization of Exosomes through Receptor-Mediated Endocytosis. Molecular Cancer Research. 2019;17(2):337-47.
29. Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, and Xiao ZD. Dynamics of exosome internalization and trafficking. Journal of Cellular Physiology. 2013;228(7):1487-95.
30. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome Uptake through Clathrin-mediated Endocytosis and Macropinocytosis and Mediating miR-21 Delivery. Journal of Biological Chemistry. 2014;289(32):22258-67.
31. Zhang J, Li S, Li L, Li M, Guo CY, Yao J, et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genom Proteom Bioinf. 2015;13(1):17-24.
32. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5.
33. Li M, Zeringer E, Barta T, Schageman J, Cheng AG, and Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos T R Soc B. 2014;369(1652).
34. McCready J, Sims JD, Chan D, and Jay DG. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer. 2010;10:294.
35. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, and Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 2014;124(25):3748-57.
36. Shan Y, You B, Shi S, Shi W, Zhang Z, Zhang Q, et al. Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases. Cell Death Dis. 2018;9(3):382.
37. Vignard V, Labbe M, Marec N, Andre-Gregoire G, Jouand N, Fonteneau JF, et al. MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma. Cancer Immunol Res. 2020;8(2):255-67.
38. Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y, et al. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 2017;16(1):148.
39. Le MT, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Invest. 2014;124(12):5109-28.
40. Hood JL, San RS, and Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71(11):3792-801.
41. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816-26.
42. Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, and Mohammadi-Yeganeh S. Delivery of miR-381-3p Mimic by Mesenchymal Stem Cell-Derived Exosomes Inhibits Triple Negative Breast Cancer Aggressiveness; an In Vitro Study. Stem Cell Reviews and Reports. 2021.
43. Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM, et al. Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. Journal of Proteome Research. 2018;17(1):486-98.
44. Jiang SJ, Mo CQ, Guo SJ, Zhuang JT, Huang B, and Mao XP. Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2. J Exp Clin Canc Res. 2019;38(1).
45. Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1 alpha/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40(5):457-70.
46. Yong T, Zhang X, Bie N, Zhang H, Zhang X, Li F, et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019;10(1):3838.
47. Saari H, Lazaro-Ibanez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, and Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727-37.
48. Xiao L, Erb U, Zhao K, Hackert T, and Zoller M. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology. 2017;6(6):e1319044.
49. Liu T, Zhang X, Du LT, Wang YS, Liu XM, Tian H, et al. Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Molecular Cancer. 2019;18.
50. Qu L, Ding J, Chen C, Wu ZJ, Liu B, Gao Y, et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell. 2016;29(5):653-68.
51. Zhou BT, Xu KL, Zheng X, Chen T, Wang J, Song YM, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Tar. 2020;5(1).
52. Teow SY, Liew K, Khoo AS, and Peh SC. Pathogenic Role of Exosomes in Epstein-Barr Virus (EBV)-Associated Cancers. Int J Biol Sci. 2017;13(10):1276-86.
53. Zhou Y, Xia L, Lin J, Wang H, Oyang L, Tan S, et al. Exosomes in Nasopharyngeal Carcinoma. J Cancer. 2018;9(5):767-77.
54. Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquere S, Nishi N, Hirashima M, et al. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer. 2006;6:283.
55. Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, et al. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33(37):4613-22.
56. Ahmed W, Philip PS, Tariq S, and Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One. 2014;9(6):e99163.
57. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, et al. Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A. 2010;107(14):6328-33.
58. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904-12.
59. Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH, and Kang JL. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol. 2019;16(11):851-67.
60. Quail DF, and Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-37.
61. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59.
62. Shi X, Young CD, Zhou H, and Wang X. Transforming Growth Factor-beta Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules. 2020;10(12).
63. Gratchev A. TGF-beta signalling in tumour associated macrophages. Immunobiology. 2017;222(1):75-81.
64. Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, et al. Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood. 2009;114(2):469-77.
65. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu NF, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94(6):715-25.
66. Lin J, Cao S, Wang Y, Hu Y, Liu H, Li J, et al. Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1alpha/VEGFA signalling in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018;37(1):113.
67. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, and Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111 014647.
68. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891-906.
69. Han W, Chen S, Yuan W, Fan Q, Tian J, Wang X, et al. Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci U S A. 2016;113(40):11208-13.
70. Hsu YL, Huang MS, Hung JY, Chang WA, Tsai YM, Pan YC, et al. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene. 2020;39(4):739-53.
71. Karlou M, Tzelepi V, and Efstathiou E. Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol. 2010;7(9):494-509.
72. Bahrami A, Hassanian SM, Khazaei M, Hasanzadeh M, Shahidsales S, Maftouh M, et al. The Therapeutic Potential of Targeting Tumor Microenvironment in Breast Cancer: Rational Strategies and Recent Progress. J Cell Biochem. 2018;119(1):111-22.
73. Bahrami A, Khazaei M, Hassanian SM, ShahidSales S, Joudi-Mashhad M, Maftouh M, et al. Targeting the tumor microenvironment as a potential therapeutic approach in colorectal cancer: Rational and progress. J Cell Physiol. 2018;233(4):2928-36.
74. Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun. 2020;11(1):4835.
75. Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B, et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol. 2020;21(4):442-54.
76. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630.
77. Djurec M, Grana O, Lee A, Troule K, Espinet E, Cabras L, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. P Natl Acad Sci USA. 2018;115(6):E1147-E56.
78. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016;5:e10250.
79. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-86.
80. Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, and Diamandis EP. Cancer-Associated Fibroblasts Drive the Progression of Metastasis through both Paracrine and Mechanical Pressure on Cancer Tissue. Molecular Cancer Research. 2012;10(11):1403-18.
81. Nurmik M, Ullmann P, Rodriguez F, Haan S, and Letellier E. In search of definitions: Cancer-associated fibroblasts and their markers. International Journal of Cancer. 2020;146(4):895-905.
82. Pereira BA, Vennin C, Papanicolaou M, Chambers CR, Herrmann D, Morton JP, et al. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends in Cancer. 2019;5(11):724-41.
83. Frangogiannis NG. Fibroblast-Extracellular Matrix Interactions in Tissue Fibrosis. Curr Pathobiol Rep. 2016;4(1):11-8.
84. Ding XS, Ji J, Jiang JL, Cai Q, Wang C, Shi M, et al. HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death & Disease. 2018;9.
85. Zhuang J, Lu Q, Shen B, Huang X, Shen L, Zheng X, et al. TGFbeta1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci Rep. 2015;5:11924.
86. Henriksson ML, Edin S, Dahlin AM, Oldenborg PA, Oberg A, Van Guelpen B, et al. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol. 2011;178(3):1387-94.
87. Kuzet SE, and Gaggioli C. Fibroblast activation in cancer: when seed fertilizes soil. Cell Tissue Res. 2016;365(3):607-19.
88. Cheteh EH, Sarne V, Ceder S, Bianchi J, Augsten M, Rundqvist H, et al. Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discov. 2020;6(1):42.
89. Monteran L, and Erez N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Frontiers in Immunology. 2019;10.
90. Liu T, Han C, Wang S, Fang P, Ma Z, Xu L, et al. Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol. 2019;12(1):86.
91. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330(6005):827-30.
92. Wen Y, Wang CT, Ma TT, Li ZY, Zhou LN, Mu B, et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101(11):2325-32.
93. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGF beta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538-+.
94. Ferrer-Mayorga G, Gomez-Lopez G, Barbachano A, Fernandez-Barral A, Pena C, Pisano DG, et al. Vitamin D receptor expression and associated gene signature in tumour stromal fibroblasts predict clinical outcome in colorectal cancer. Gut. 2017;66(8):1449-62.
95. Wang SM, Ma N, Kawanishi S, Hiraku Y, Oikawa S, Xie Y, et al. Relationships of Alpha-SMA-Positive Fibroblasts and SDF-1-Positive Tumor Cells with Neoangiogenesis in Nasopharyngeal Carcinoma. Biomed Research International. 2014;2014.
96. Zhu D, Duo Y, Suo M, Zhao Y, Xia L, Zheng Z, et al. Tumor-exocytosed exosome/AIEgen hybrid nano-vesicles facilitate efficient tumor penetration and photodynamic therapy. Angew Chem Int Ed Engl. 2020.
97. Yu YH, Ke LR, Lv X, Ling YH, Lu JB, Liang H, et al. The prognostic significance of carcinoma-associated fibroblasts and tumor-associated macrophages in nasopharyngeal carcinoma. Cancer Manag Res. 2018;10:1935-46.
98. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, and Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. Journal of Biological Chemistry. 1999;274(51):36505-12.
99. Christiansen VJ, Jackson KW, Lee KN, and McKee PA. Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys. 2007;457(2):177-86.
100. Niedermeyer J, Garin-Chesa P, Kriz M, Hilberg F, Mueller E, Bamberger U, et al. Expression of the fibroblast activation protein during mouse embryo development. International Journal of Developmental Biology. 2001;45(2):445-7.
101. Sandberg TP, Stuart MPME, Oosting J, Tollenaar RAEM, Sier CFM, and Mesker WE. Increased expression of cancer-associated fibroblast markers at the invasive front and its association with tumor-stroma ratio in colorectal cancer. Bmc Cancer. 2019;19.
102. Mathew S, Scanlan MJ, Mohan Raj BK, Murty VV, Garin-Chesa P, Old LJ, et al. The gene for fibroblast activation protein alpha (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics. 1995;25(1):335-7.
103. Hamson EJ, Keane FM, Tholen S, Schilling O, and Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl. 2014;8(5-6):454-63.
104. Wu QQ, Zhao M, Huang GZ, Zheng ZN, Chen YC, Zeng WS, et al. Fibroblast Activation Protein (FAP) Overexpression Induces Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma by Down-Regulating Dipeptidyl Peptidase 9 (DPP9). Oncotargets Ther. 2020;13:2599-611.
105. Mentlein R, Hattermann K, Hemion C, Jungbluth AA, and Held-Feindt J. Expression and role of the cell surface protease seprase/fibroblast activation protein-alpha (FAP-alpha) in astroglial tumors. Biol Chem. 2011;392(3):199-207.
106. Lee HO, Mullins SR, Franco-Barraza J, Valianou M, Cukierman E, and Cheng JD. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells. Bmc Cancer. 2011;11.
107. Higashino N, Korna Y, Hosono M, Takase N, Okamoto M, Kodaira H, et al. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest. 2019;99(6):777-92.
108. Liu JY, Huang CQ, Peng CW, Xu F, Li Y, Yutaka Y, et al. Stromal fibroblast activation protein alpha promotes gastric cancer progression via epithelial-mesenchymal transition through Wnt/beta-catenin pathway. Bmc Cancer. 2018;18.
109. Shi J, Hou Z, Yan J, Qiu W, Liang L, Meng M, et al. The prognostic significance of fibroblast activation protein-alpha in human lung adenocarcinoma. Ann Transl Med. 2020;8(5):224.
110. Coto-Llerena M, Ercan C, Kancherla V, Taha-Mehlitz S, Eppenberger-Castori S, Soysal SD, et al. High Expression of FAP in Colorectal Cancer Is Associated With Angiogenesis and Immunoregulation Processes. Front Oncol. 2020;10.
111. Wikberg ML, Edin S, Lundberg IV, Van Guelpen B, Dahlin AM, Rutegard J, et al. High intratumoral expression of fibroblast activation protein (FAP) in colon cancer is associated with poorer patient prognosis. Tumor Biol. 2013;34(2):1013-20.
112. Shi M, Yu DH, Chen Y, Zhao CY, Zhang J, Liu QH, et al. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroentero. 2012;18(8):840-6.
113. Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death & Disease. 2014;5.
114. Li M, Cheng X, Rong R, Gao Y, Tang XW, and Chen YG. High expression of fibroblast activation protein (FAP) predicts poor outcome in high-grade serous ovarian cancer. Bmc Cancer. 2020;20(1).
115. Chen MH, Xiang R, Wen Y, Xu GC, Wang CT, Luo ST, et al. A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep-Uk. 2015;5.
116. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994;12(6):1193-203.
117. Brennen WN, Rosen DM, Chaux A, Netto GJ, Isaacs JT, and Denmeade SR. Pharmacokinetics and toxicology of a fibroblast activation protein (FAP)-activated prodrug in murine xenograft models of human cancer. Prostate. 2014;74(13):1308-19.
118. Akinboye ES, Brennen WN, Rosen DM, Bakare O, and Denmeade SR. Iterative Design of Emetine-Based Prodrug Targeting Fibroblast Activation Protein (FAP) and Dipeptidyl Peptidase IV DPPIV Using a Tandem Enzymatic Activation Strategy. Prostate. 2016;76(8):703-14.
119. Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962-71.
120. Moroishi T, Hansen CG, and Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15(2):73-9.
121. Piccolo S, Dupont S, and Cordenonsi M. The Biology of Yap/Taz: Hippo Signaling and Beyond. Physiol Rev. 2014;94(4):1287-312.
122. Das A, Fischer RS, Pan DJ, and Waterman CM. YAP Nuclear Localization in the Absence of Cell-Cell Contact Is Mediated by a Filamentous Actin-dependent, Myosin II- and Phospho-YAP-independent Pathway during Extracellular Matrix Mechanosensing. Journal of Biological Chemistry. 2016;291(12):6096-110.
123. Panciera T, Azzolin L, Cordenonsi M, and Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Bio. 2017;18(12):758-70.
124. Zanconato F, Cordenonsi M, and Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell. 2016;29(6):783-803.
125. Ling HH, Kuo CC, Lin BX, Huang YH, and Lin CW. Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res. 2017;350(1):218-25.
126. Cheng D, Jin L, Chen Y, Xi X, and Guo Y. YAP promotes epithelial mesenchymal transition by upregulating Slug expression in human colorectal cancer cells. Int J Clin Exp Pathol. 2020;13(4):701-10.
127. Warren JSA, Xiao YX, and Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers. 2018;10(4).
128. Zanconato F, Battilana G, Cordenonsi M, and Piccolo S. YAP/TAZ as therapeutic targets in cancer. Curr Opin Pharmacol. 2016;29:26-33.
129. Benhamouche S, Curto M, Saotome I, Gladden AB, Liu CH, Giovannini M, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Gene Dev. 2010;24(16):1718-30.
130. Wei HL, Wang FH, Wang Y, Li T, Xiu P, Zhong JT, et al. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci. 2017;108(3):478-87.
131. Liu SC, Hsu T, Chang YS, Chung AK, Jiang SS, OuYang CN, et al. Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling. Nat Commun. 2018;9.
132. Chen YZ, Zhao XG, Sun J, Su W, Zhang L, Li YN, et al. YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death and Differentiation. 2019;26(9):1832-44.
133. Yu HX, Yao Y, Bu FT, Chen Y, Wu YT, Yang Y, et al. Blockade of YAP alleviates hepatic fibrosis through accelerating apoptosis and reversion of activated hepatic stellate cells. Mol Immunol. 2019;107:29-40.
134. Shen T, Li Y, Zhu S, Yu J, Zhang B, Chen X, et al. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J Exp Clin Cancer Res. 2020;39(1):36.
135. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology. 2013;15(6):637-+.
136. Noguchi S, Saito A, and Nagase T. YAP/TAZ Signaling as a Molecular Link between Fibrosis and Cancer. International Journal of Molecular Sciences. 2018;19(11).
137. Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, et al. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med. 2019;11(516).
138. Aravamudhan A, Haak AJ, Choi KM, Meridew JA, Caporarello N, Jones DL, et al. TBK1 regulates YAP/TAZ and fibrogenic fibroblast activation. Am J Physiol-Lung C. 2020;318(5):L852-L63.
139. Morten P. Oksvold AN, Ketil W. Pedersen. Magnetic Bead-Based Isolation of Exosome. Methods Mol Biol. 2015;1218.
140. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526-37.
141. Wang JH, Zhao L, Pan X, Chen NN, Chen J, Gong QL, et al. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-beta1 signaling pathway. Lab Invest. 2016;96(9):1035.
142. Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, et al. IL-8 mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L127-L36.
143. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768-79.
144. Pocaterra A, Romani P, and Dupont S. YAP/TAZ functions and their regulation at a glance. Journal of Cell Science. 2020;133(2).
145. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, and Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59(19):5002-11.
146. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26(12):1300-5.
147. Kieser A, and Sterz KR. In: Münz C ed. Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases. Cham: Springer International Publishing; 2015:119-49.
148. Flanagan J, Middeldorp J, and Sculley T. Localization of the Epstein-Barr virus protein LMP 1 to exosomes. J Gen Virol. 2003;84(Pt 7):1871-9.
149. Yang X, Sham JS, Ng MH, Tsao SW, Zhang D, Lowe SW, et al. LMP1 of Epstein-Barr virus induces proliferation of primary mouse embryonic fibroblasts and cooperatively transforms the cells with a p16-insensitive CDK4 oncogene. J Virol. 2000;74(2):883-91.
150. Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, et al. Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett. 2020;478:93-106.
151. Ghersi G, Zhao Q, Salamone M, Yeh YY, Zucker S, and Chen WT. The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res. 2006;66(9):4652-61.
152. Meckes DG, Shair KHY, Marquitz AR, Kung CP, Edwards RH, and Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. P Natl Acad Sci USA. 2010;107(47):20370-5.
153. Kato T, Noma K, Ohara T, Kashima H, Katsura Y, Sato H, et al. Cancer-Associated Fibroblasts Affect Intratumoral CD8(+) and FoxP3(+) T Cells Via IL6 in the Tumor Microenvironment. Clin Cancer Res. 2018;24(19):4820-33.
154. Wang S, Ma N, Kawanishi S, Hiraku Y, Oikawa S, Xie Y, et al. Relationships of alpha-SMA-positive fibroblasts and SDF-1-positive tumor cells with neoangiogenesis in nasopharyngeal carcinoma. Biomed Res Int. 2014;2014:507353.
指導教授 劉淑貞(Shu-Chen Liu) 審核日期 2021-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明