博碩士論文 108827004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.15.10.164
姓名 哈卓司(Harnod Zeus)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 應用模擬電生理及人工智慧技術創造跨臨床心電圖資料庫之心肌缺血成像模型
(Application of Virtual Electrophysiology and Artificial Intelligence Technology to Establish a Visualized Model of Myocardial Ischemia)
相關論文
★ 以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發★ 複雜系統跨頻率耦合方法
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 基於小波轉換之單一導程心電圖 重構12導程心電圖與分類
★ 發展非侵入式即時交感神經活性指標之量測系統★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響
★ 運用加速度計實現具多項生理功能量測之即時監控IOT平台★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用
★ 創新利用模擬呼吸竇性心律不整之多階熵評估乙型腎上腺素阻斷劑在心衰竭病人之治療成效★ 發展高抗干擾非接觸式生理訊號監測系統
★ 應用特徵分群技術於非侵入式神經活性與行 為活動訊號之生物指標萃取★ 體外加強反搏治療裝置開發
★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患★ 利用皮膚交感神經活化之時序複雜度和多尺度分析萃取心房顫動或心臟衰竭患者治療與預後 之生理指標
★ 發展個人化遠距醫療專用之智慧心電聽診器系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去15年來,缺血性心臟病一直是世界10大首要死因之一,在2016年世界衛生組織(World Health Organization, WHO)的統計中,一千多萬人口死於該病灶。除了冠狀動脈阻塞造成的風險外,還可能引起許多併發症,包括:心室心律不整、心搏停止、房室傳導阻滯,甚至是心衰竭及心因性猝死;上述併發症危險性雖高,但是可以藉由及早血管重建治療來降低其風險,例如:經皮冠狀動脈介入治療、放置血管支架或非侵入性血栓溶劑。然而,現今用於檢測及定位心肌梗塞的醫療儀器,包括:單光子電腦斷層掃描與心導管檢查等,存在許多潛在缺點,低準確度、昂貴、耗時、侵入性或具有放射性、難以重現性及長期監測等,此外視為黃金標準的檢測方法也不具備遠距居家監測、快篩與早期診斷的能力,有鑑於此市場需求,本研究選用普遍被用於監測心臟電氣活動的12導程心電圖並用於心肌缺血的診斷,在現今的研究中,使用12導程心電圖訊號判斷是否發生心肌缺血已經具有不錯的準確度,然而定位心肌缺血發生的位置仍未被實踐。
臨床上,心肌缺血以及梗塞會造成該區域心肌細胞的跨細胞膜電位值異常,特徵有:延遲激發時間、激發電位值降低、靜止電位值上升、激發動作間期縮短等,而具備這些特徵的跨細胞膜電位的心肌細胞會導致該區域復極化電位梯度值上升,並造成鄰近缺血區域的心電圖導程訊號ST間期電位值上升或下降,以及T波電位值上升甚至是反轉等現象,本研究利用了這種現象的電生理機轉,以電腦模擬建立出擬真的心臟放電模型,並於該模型下模擬心肌缺血可能發生的所有位置與缺血嚴重程度後,使用forward計算得到這些心肌缺血模式下的12導程心電圖訊號並建立龐大的心肌缺血心電圖資料庫,以模擬心臟模型結合具有穩健性的稀疏表示式分類演算法應用於具有高度個體變異性的143位心肌梗塞病患,定位心肌梗塞位置的準確度可以達到0.91,最後將心肌缺血位置與嚴重程度從心臟模型投影到二維圓形平面上,過此技術,本研究視覺化的呈現心肌血流灌注情形並提升12導程心電圖診斷心肌梗塞的能力。
摘要(英) In the past 15 years, ischemic heart disease is one of the world’s biggest killers. According to statistics from the World Health Organization in 2016, 10 million deaths were caused by it. This is not only due to the damage caused by coronary artery occlusion, but also many complications of myocardial ischemia including ventricular arrhythmia, cardiac arrest, atrioventricular block, and even heart failure and sudden cardiac death. Although these complications will cause serious damage, it can be prevented by early revascularization such as percutaneous coronary intervention (PCI), placing vascular stents, or thrombolytic agents. However, several clinical examination methods for diagnosing ischemia, such as single photon emission computed tomography and cardiac catheterization, may have many potential shortcomings, including low accuracy, high expense, time consumption, intrusive, the need of injection of radiocontrast agent, the problem of long-term monitoring, and the difficulty of reproducibility. Moreover, the gold standard examination method lacks of the abilities of remote home monitoring, rapid screening, and early diagnosis. In view of this market demand, the 12-lead electrocardiogram (ECG), which is commonly used to monitor the cardiac electrical activity, was selected and used for the diagnosis of myocardial ischemia. Besides, in the existing researches, the 12-lead ECG signals utilized to identify myocardial ischemia has achieved good accuracy. However, the localization of ischemia based on 12-lead ECG has not been practiced.
In clinic, myocardial ischemia and infarction will cause abnormalities to the waveform of myocardial cells’ transmembrane potentials (TMPs) in that region, including delayed activation time, reduced activation potential, rising resting potential, and reduced activation interval. These abnormal TMPs will increase the gradient of repolarized potentials in the ischemic region, and lead to the elevation or depression of the amplitude of ST segments and T waves, and even the inversion of T waves. Accordingly, based on this phenomenon of the electrophysiological mechanism, this study established a realistic ventricle-thorax anisotropic computer model to simulate the real-world electrical pacing of cardiac. By modifying the waveform of TMPs in different regions with various degrees of modification, we could simulate all possible ischemic regions and severity corresponding to real-world patients. Through forward calculation, we could calculate the 12-lead ECG signals from the ischemic cardiac potentials and established a massive 12-lead ECG ischemia database. The realistic computer cardiac model combined with a robust sparse representation classification algorithm was applied to 143 patients with myocardial infarction, and the accuracy of locating myocardial infarction could reach 0.91. Finally, we projected the severity and ischemic region from ventricular model into a 2D circular plane, which could visually display the perfusion of myocardial cells and improve the ability of 12-lead ECG to diagnose myocardial infarction.
關鍵字(中) ★ 心肌缺血
★ 心肌梗塞
★ 模擬心臟模型
★ 12導程心電圖
★ 視覺化診斷
★ 人工智慧
關鍵字(英) ★ myocardial ischemia
★ myocardial infarction
★ simulation model
★ 12-lead ECG
★ visual diagnosis
★ AI
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
第一章 緒論 1
1-1 研究背景與動機 1
1-2 相關文獻導讀 2
1-3 本文架構 5
第二章 研究原理 6
2-1 心臟電生理 6
2-2 跨細胞膜電位 7
2-3 12導程心電圖 9
第三章 研究方法 11
3-1 擬真異質性電腦模擬心臟模型 11
3-2 基於心臟模型的心肌缺血模擬 13
3-2-1 五種缺血嚴重程度的跨細胞膜電位波型 13
3-2-2 建立26種心肌缺血位置 14
3-2-3 微調缺血區域的空間分布 14
3-2-4 模擬正常案例的心臟電位 15
3-3 Forward Calculation 15
3-4 訊號前處理與特徵提取 18
3-5 稀疏表示式分類器 21
3-6 產生驗證資料集 29
3-7 其他分類器模型 30
第四章 研究結果與討論 31
4-1 使用模擬資料驗證模型 31
4-2 真實案例測試模型性能與成像效果 33
4-3 導程縮減 (Lead Reduction) 41
4-4 穩健性測試 43
4-4-1 多種雜訊程度下方法的性能 43
4-4-2 多種心軸角度的分類性能 45
4-5 優點與限制 47
第五章 結論與延伸應用 48
5-1 結論 48
5-2 延伸應用 49
5-2-1 建立五種嚴重程度與七個心肌肥大位置的模擬 50
5-2-2 收縮型心衰竭12導程心電圖 50
參考文獻 52
參考文獻 [1] P. G. Steg et al., “Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: Data from the international observational clarify registry,” JAMA Intern Med, vol. 174, no. 10, pp. 1651-1659, 2014.
[2] F. M. Fesmire et al., “Usefulness of automated serial 12-lead ecg monitoring during the initial emergency department evaluation of patients with chest pain,” Annals of Emergency Medicine, vol. 31, no. 1, pp. 3-11, Jan. 1998.
[3] W. B. Gibler et al., “A rapid diagnostic and treatment center for patients with chest pain in the emergency department,” Annals of Emergency Medicine, vol. 25, no. 1, pp. 1-8, Jan. 1995.
[4] G. S. Kamath et al., “The utility of 12-lead holter monitoring in patients with permanent atrial fibrillation for the identification of nonresponders after cardiac resynchronization therapy,” Journal of the American College of Cardiology, vol. 53, no. 12, pp. 1050-1055, 2009.
[5] J.-c. Hsieh et al., “A cloud computing based 12-lead ecg telemedicine service,” BM”C medical informatics and decision making, vol. 12, no. 1, pp. 1-12, 2012.
[6] Feng K et al., “Myocardial Infarction Classification Based on Convolutional Neural Network and Recurrent Neural Network,” Applied Sciences, 2019.
[7] H. Wang et al., “Myocardial infarction detection based on multi-lead ensemble neural network,” in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 2614-2617: IEEE.
[8] K. Nikus et al., “Updated electrocardiographic classification of acute coronary syndromes,” Current cardiology reviews. vol. 10, no. 3, pp. 229-236, 2014.
[9] R. Firoozabadi et al., “Modeling and classification of the st segment morphology for enhanced detection of acute myocardial infarction,” in 2019 Computing in Cardiology (CinC), 2019, pp. Page 1-Page 4: IEEE.
[10] U. B. Baloglu et al., “Classification of myocardial infarction with multi-lead ecg signals and deep cnn,” Pattern Recognition Letters, vol. 122, pp. 23-30, May. 2019.
[11] W. Liu et al., “Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram,” Biomedical Signal Processing and Control, vol. 45, pp. 22-32, 2018.
[12] C. Han et al., “Ml–resnet: A novel network to detect and locate myocardial infarction using 12 leads ecg,” Computer methods and programs in biomedicine, vol. 185, p. 105138, 2020.
[13] Bousseljot, R. et al. “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet.” Biomedical Engineering/Biomedizinische Technik 40.s1 (1995): 317-318.
[14] S. Al-Zaiti et al., “Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram,” Nature communications, vol. 11, no. 1, pp. 1-10, 2020.
[15] R. L. Lux, “Non‐st‐segment elevation myocardial infarction: A novel and robust approach for early detection of patients at risk,” Journal of the American Heart Association, 2015.
[16] Al‐Zaiti et al., “Clinical utility of ventricular repolarization dispersion for real‐time detection of non‐ST elevation myocardial infarction in emergency departments.” Journal of the American Heart Association 4.7 (2015): e002057.
[17] Z. Zhou et al., “Noninvasive imaging of 3-dimensional myocardial infarction from the inverse solution of equivalent current density in pathological hearts,” IEEE Transactions on Biomedical Engineering, vol. 62, no. 2, pp. 468-476, 2014.
[18] F. Dawoud et al., “Using inverse electrocardiography to image myocardial infarction—reflecting on the 2007 physionet/computers in cardiology challenge,” Journal of electrocardiology, vol. 41, no. 6, pp. 630-635, 2008.
[19] M. Lorange et al., “A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation,” Journal of electrocardiology, vol. 26, no. 4, pp. 245-261, 1993.
[20] A. Van Oosterom et al., “The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometry,” Journal of electrocardiology, vol. 22, no. 1, pp. 53-72, 1989.
[21] N. Cedilnik et al., “Fast personalized electrophysiological models from computed tomography images for ventricular tachycardia ablation planning,” EP Europace, vol. 20, no. suppl_3, pp. iii94-iii101, 2018.
[22] T. Yang et al., “Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ecg,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 7, pp. 1662-1671, 2017.
[23] R. M. Shaw et al., “Electrophysiologic effects of acute myocardial ischemia: A theoretical study of altered cell excitability and action potential duration,” Cardiovascular research, vol. 35, no. 2, pp. 256-272, 1997.
[24] Van Oosterom et al., “Genesis of the t wave as based on an equivalent surface source model,” Journal of electrocardiology, vol. 34, pp. 217-228, 2001.
[25] P. G. Steg et al., “Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: Data from the international observational clarify registry,” JAMA Intern Med, vol. 174, no. 10, pp. 1651-1659, 2014.
[26] L. Weixue et al., “Microcomputer-based cardiac field simulation model,” Medical and Biological Engineering and Computing, vol. 31, no. 4, pp. 384-387, 1993.
[27] R. Doste et al., “A rule‐based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts,” International journal for numerical methods in biomedical engineering, vol. 35, no. 4, p. e3185, 2019.
[28] B. He et al., “Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 10, pp. 1190-1202, 2003.
[29] J. KUPERSMiTH et al., “Conduction intervals and conduction velocity in the human cardiac conduction system: Studies during open-heart surgery,” Circulation, vol. 47, no. 4, pp. 776-785, 1973.
[30] C. Han et al., “Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: A computational and experimental study on a rabbit model,” IEEE transactions on medical imaging, vol. 27, no. 11, pp. 1622-1630, 2008.
[31] Z. Liu et al., “Noninvasive reconstruction of three-dimensional ventricular activation sequence from the inverse solution of distributed equivalent current density,” IEEE transactions on medical imaging, vol. 25, no. 10, pp. 1307-1318, 2006.
[32] R. C. Barr et al., “Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements,” IEEE Transactions on biomedical engineering, no. 1, pp. 1-11, 1977.
[33] Y. Yamashita et al., “Source-field relationships for cardiac generators on the heart surface based on their transfer coefficients,” IEEE transactions on biomedical engineering, no. 11, pp. 964-970, 1985.
[34] R. N. Klepfer et al., “The effects of inhomogeneities and anisotropies on electrocardiographic fields: A 3-d finite-element study,” IEEE transactions on bio-medical engineering, vol. 44, no. 8, pp. 706-719, 1997.
[35] G. Fischer et al., “A bidomain model based bem-fem coupling formulation for anisotropic cardiac tissue,” Annals of biomedical engineering, vol. 28, no. 10, pp. 1229-1243, 2000.
[36] D. Wu et al., “An improved method for ecg signal feature point detection based on wavelet transform,” in 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). 2012, pp. 1836-1841: IEEE.
[37] Balda RA et al., “The HP ECG analysis program,” In van Bemmel JH and Willems JL, editors, Trends in Computer-processed Electrocardiograms, pages 197-205. North Holland, Amsterdam, The Netherlands, 1977.
[38] P. W. Macfarlane et al., “Comprehensive electrocardiology,” Springer Science & Business Media, 2010.
[39] J. Wright et al., “Robust face recognition via sparse representation,” IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 2, pp. 210-227, 2008.
[40] Figueiredo, Mário AT et al., “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems.” IEEE Journal of selected topics in signal processing 1.4 (2007): 586-597.
[41] L. Galeotti et al., “Development of an automated method for display of ischemic myocardium from simulated electrocardiograms,” Journal of electrocardiology, vol. 42, no. 2, pp. 204-212, 2009.
[42] S. H. Jambukia et al., “Classification of ecg signals using machine learning techniques: A survey,” in 2015 International Conference on Advances in Computer Engineering and Applications, 2015, pp. 714-721: IEEE.
[43] J. Sohn et al., “Reconstruction of 12-lead electrocardiogram from a three-lead patch-type device using a lstm network,” Sensors, vol. 20, no. 11, p. 3278, 2020.
[44] Z. Xu et al., “Reconstruction of 12-lead electrocardiogram based on gvm,” in 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD), 2018, pp. 275-280: IEEE.
[45] B. J. Drew et al., “Comparison of a new reduced lead set ecg with the standard ecg for diagnosing cardiac arrhythmias and myocardial ischemia,” Journal of electrocardiology, vol. 35, no. 4, pp. 13-21, 2002.
[46] M. Fereniec et al., “The 64 channel system for high resolution ecg mapping,” in Computers in Cardiology 2001, vol. 28 (Cat. No. 01CH37287), 2001, pp. 513-515: IEEE.
[47] B. Khaddoumi et al., “Body surface ecg signal shape dispersion,” IEEE transactions on biomedical engineering, vol. 53, no. 12, pp. 2491-2500, 2006.
[48] Z. Zhou et al., “Noninvasive imaging of high-frequency drivers and reconstruction of global dominant frequency maps in patients with paroxysmal and persistent atrial fibrillation,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 6, pp. 1333-1340, 2016.
[49] C. Han et al., “Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 308, no. 2, pp. H108-H114, 2015.
[50] C. Han et al., “Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia,” Heart Rhythm, vol. 8, no. 8, pp. 1266-1272, 2011.
[51] Barold, S. Serge, and ARY L. GOLDBERGER. “A specific ECG triad associated with congestive heart failure,” Pacing and Clinical Electrophysiology 5.4 (1982): 593-599.
指導教授 羅孟宗(Men-Tzung Lo) 審核日期 2021-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明