博碩士論文 108827007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.118.144.69
姓名 陳涴辰(Wo-Chen Chen)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾
(Biocompatible modification of polydimethylsiloxane by deposition of poly(2-methacryloyloxyethyl phosphorylcholine-co-methacryloxypropyl terminated polydimethylsiloxane))
相關論文
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-27以後開放)
摘要(中) 聚二甲基矽氧烷(Polydimethylsiloxane ,PDMS)是一種常見的的矽膠材料。由於其易於製造且具有良好的機械性質、光學透明度、透氧性及化學和生物惰性,使其適合應用於導管、人工血管、隱形眼鏡、人工晶體等接觸人體或植入人體的生醫材料上。但由於PDMS表面的疏水性質,使得蛋白質和其他分子的非特異性吸附限制了其在這些應用上的發展。兩性雙離子材料2-甲基丙烯酰氧乙基磷酸胆碱(2-methacryloyloxyethyl phosphorylcholine)具有優良的親水性、生物相容性、潤滑、抗蛋白及細菌吸附能力。本實驗透過將兩性雙離子材料MPC (2-methacryloyloxyethyl phosphorylcholine )與擁有直鏈矽氧烷的mono Methacryloxypropyl terminated polydimethylsiloxane和擁有支鏈矽氧烷mono Methacryloxypropyl functional polydimethylsiloxane分別合成出擁有直鏈與支鏈輸水端的共聚物,用浸塗與噴塗兩種不同的修飾方式沉積在PDMS上,透過共聚物上的疏水鏈段與基材的PDMS之間的疏水作用力將共聚物吸附到表面上,提升PDMS表面的親水性、潤滑性與抗汙性。第一部份我們使用核磁共振光譜儀(Nuclear Magnetic Resonance spectroscopy)對聚合物進行轉化率與化學結構的鑑定,以及測定修飾溶液的黏度與表面張力了解溶液的性質;第二部份透過水接觸角、摩擦力測試檢視浸塗與噴塗兩種不同塗佈方式的親水性、表面潤滑度與耐磨性;第三部份使用原子力顯微鏡與光學顯微鏡對修飾表面形貌進行鑑定;最後部份,特過抗細菌貼附測試檢測修飾層的抗汙性。本研究透過簡單與低毒性的製程將共聚物Poly(MPC-co-MTP)與Poly(MPC-co-MFP)修飾於PDMS表面上,增加其親水性、潤滑、抗汙與生物相容性,期許為來延伸應用於各式矽膠表面修飾。
摘要(英) Polydimethylsiloxane (PDMS) is a silicone material that has excellent elasticity, optical transparency, chemical and biological inertness, permeability to oxygen, and ease of fabrication. Therefore, PDMS has been used for biomedical applications such as catheters, vascular grafts, contact lenses, and intraocular lenses. However, it has some problems in the development of medical applications because the hydrophobic surface of PDMS, leading to non-specific adsorption of protein. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is well known as its hydrophilicity, biocompatibility, lubrication, and anti-protein adsorption. In our study, the zwitterionic copolymers, poly(2-methacryloyloxyethyl phosphorylcholine-co-methacryloxypropyl terminated polydimethylsiloxane (poly(MPC-MTP))and(2-methacryloyloxyethyl phosphorylcholine-co-methacryloxypropyl functional polydimethylsiloxane (poly(MPC-MFP)), were deposited on PDMS by dip coating and spray coating in an ambient environment, and polymers will adsorbed on the surface by hydrophobic interaction between the hydrophobic segment on the copolymer and surface of PDMS to improve its hydrophilicity and antifouling properties. The nuclear magnetic resonance was used to measure the conversion rate and identification of the chemical structure of copolymer. The surface chemical composition and elemental ratios were measured by the X-ray photoelectron spectroscopy (XPS). The surface morphology was measured by atomic force microscope (AFM) and optical microscope. The hydrophilicity was determined by sessile drop water contact angle measurements. The lubrication and, antifouling property were measured by friction test, and bacteria adhesion tests, respectively. We used simple and low toxic process for modification of PDMS by poly(MPC-co-MTP) and poly(MPC-co-MFP) to improve hydrophilicity , lubrication, anti-fouling property, oxygen permeability and biocompatibility. In future work, we will extend to various types of silicone surface modification.
關鍵字(中) ★ 雙離子材料
★ 2-甲基丙烯酰氧乙基磷酸胆碱
★ 聚二甲基矽氧烷
關鍵字(英) ★ zwitterionic material
★ 2-methacryloyloxyethyl phosphorylcholine
★ Polydimethylsiloxane
論文目次 目錄
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
化學品名詞簡稱 x
聚合物名詞簡稱 xi
一、文獻回顧 1
1-1 聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)的應用與困境 1
1-2 聚二甲基矽氧烷修飾方法 3
1-2-1 表面修飾 3
1-2-2 本體修飾 4
1-3 有機矽丙烯酸塗佈 5
1-4 光起始表面修飾 6
1-5 雙離子聚合物與雙離子材料 7
1-6 線性與分支聚合物 9
1-7 噴塗修飾 11
二、研究目的 12
三、藥品、儀器與實驗方法 14
3-1 實驗藥品 14
3-2 儀器設備 15
3-3 材料合成與製備 16
3-3-1 聚二甲基矽氧烷(PDMS)片製備 16
3-3-2 Poly(MPC-co-MTP)與Poly(MPC-co-MFP)共聚物製備 16
3-4 實驗方法 17
3-4-1 聚二甲基矽氧烷(PDMS)片浸塗修飾 17
3-4-2 聚二甲基矽氧烷(PDMS)片噴塗修飾 17
3-4-3 修飾溶液黏度測試 18
3-4-4 修飾溶液表面張力測試 18
3-4-5 水接觸角測試 19
3-4-6 水下摩擦力測定及耐磨測試 19
3-4-7 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)測試 19
3-4-8 原子力顯微鏡 (Atomic Force Microscope, AFM)測試 20
3-4-9 倒立式光學顯微鏡(Inverted microscope)表面形貌觀察 20
3-4-10 抗細菌貼附測試 21
四、結果與討論 22
4-1 共聚物性質鑑定 22
4-1-1 Poly(2-methacryloyloxyethyl phosphorylcholine-co-mono methacryloxypropyl terminated polydimethylsiloxane), (poly(MPC-co-MTP)) 1H NMR 鑑定 22
4-1-2 Poly(2-methacryloyloxyethyl phosphorylcholine-co-mono methacryloxypropyl functional polydimethylsiloxane), (poly(MPC-co-MFP)) 1H NMR 鑑定 24
4-1-3 不同比例共聚物實際親疏水比例計算 25
4-1-4 修飾溶液表面張力 26
4-1-5 修飾溶液黏度 27
4-1-6 共聚物在不同溶劑比例中的溶解度測試 28
4-2 浸塗修飾功能測試 30
4-2-1 Poly(MPC-co-MTP)與Poly(MPC-co-MTP)塗佈水接觸角比較 30
4-2-2 Poly(MPC-co-MTP)與Poly(MPC-co-MTP)塗佈潤滑度與耐磨測試 32
4-2-3 表面元素測定 34
4-3 噴塗修飾功能測試 35
4-3-1 修飾液流速與氣體壓力條件測試 35
4-3-2 Poly(MPC-co-MTP)與Poly(MPC-co-MTP)噴塗次數比較與摩擦力測試 37
4-4 修飾層表面形貌 39
4-4-1 原子力顯微鏡表面形貌與粗糙度測試 39
4-4-2 光學顯微鏡表面形貌 43
4-5 綜合討論 46
4-6 修飾層傳氧率測試 48
4-7 抗細菌貼附實驗 50
五、結論 52
六、未來展望 53
七、參考文獻 54
參考文獻 1. Mata, A., Fleischman, A. J.; Roy, S. (2005). Characterization of polydimethylsiloxane (PDMS) properties for Biomedical Micro/Nanosystems. Biomedical Microdevices, 7(4), 281-293.
2. Regehr, K.J., et al., Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip, 2009. 9(15): p. 2132-9.
3. Lu, Y., et al., Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials, 2009. 30(25): p. 4143-51.
4. Duffy, D.M., Silicone: a critical review. Advances in dermatology, 1990. 5: p. 93-107; discussion 108-9.
5. Polyzois, G.L., R.W. Winter, and G.D. Stafford, Boundary lubrication and maxillofacial prosthetic polydimethylsiloxanes. Biomaterials, 1991. 12(1): p. 79-82.
6. Ikada, Y., Surface modification of polymers for medical applications. Biomaterials, 1994. 15(10): p. 725-736.
7. James, S.J., et al., Characterization of cellular response to silicone implants in rats: implications for foreign-body carcinogenesis. Biomaterials, 1997. 18(9): p. 667-675.
8. Yue, Z., et al., Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid–collagen conjugate for neural interfacing. Biomaterials, 2011. 32(21): p. 4714-4724.
9. Venkatachalam, S. and D. Hourlier, Heat treatment of commercial Polydimethylsiloxane PDMS precursors: Part I. Towards conversion of patternable soft gels into hard ceramics. Ceramics International, 2019. 45(5): p. 6255-6262.
10. Garbassi, F., et al., Polymer surfaces: from physics to technology. Wiley.1998.
11. Kang, S., et al., Efficient reduction of fibrous capsule formation around silicone breast implants densely grafted with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers by heat-induced polymerization. Biomater Sci, 2020. 8(6): p. 1580-1591.
12. Shimizu, T., et al., Super-hydrophilic silicone hydrogels composed of interpenetrating polymer networks with phospholipid polymer. Transactions of the Materials Research Society of Japan, 2009. 34(2): p. 193-196.
13. Devanathan, T. and K. Young, Effect of postcuring on hemo-compatibility of silicone rubber. Biomaterials, medical devices, and artificial organs, 1981. 9(3): p. 225-230.
14. Abbasi, F., H. Mirzadeh, and A.-A. Katbab, Modification of polysiloxane polymers for biomedical applications: a review. Polymer International, 2001. 50(12): p. 1279-1287.
15. Rao, V. and G. Babu, Copolymerizations of methyl α-bromoacrylate, 2-bromoethyl methacrylate and 2, 3-dibromopropyl methacrylate with vinyltriacetoxysilane. European polymer journal, 1990. 26(2): p. 227-231.
16. Kanai, T., T.K. Mahato, and D. Kumar, Synthesis and characterization of novel silicone acrylate–soya alkyd resin as binder for long life exterior coatings. Progress in Organic Coatings, 2007. 58(4): p. 259-264.
17. Nagahashi, K., Y. Teramura, and M. Takai, Stable surface coating of silicone elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins. Colloids Surf B Biointerfaces, 2015. 134: p. 384-91.
18. Gauss, P., et al., α-Ketoesters as Nonaromatic Photoinitiators for Radical Polymerization of (Meth)acrylates. Macromolecules, 2019. 52(7): p. 2814-2821.
19. Green, W.A., Industrial photoinitiators: a technical guide. 2010: CRC Press.
20. Nakagawa, Y. and K. Tayama, Benzophenone-induced estrogenic potency in ovariectomized rats. Archives of toxicology, 2002. 76(12): p. 727-731.
21. Blackman, L.D., et al., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev, 2019. 48(3): p. 757-770.
22. Guo, S., et al., Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. J Colloid Interface Sci, 2015. 452: p. 43-53.
23. Xiang, T., et al., Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater, 2016. 40: p. 162-171.
24. Sin, M.-C., S.-H. Chen, and Y. Chang, Hemocompatibility of zwitterionic interfaces and membranes. Polymer Journal, 2014. 46(8): p. 436-443.
25. Jiang, S. and Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater, 2010. 22(9): p. 920-32.
26. Vaisocherova, H., et al., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem, 2008. 80(20): p. 7894-901.
27. Zhang, Z., S. Chen, and S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-5.
28. Yang, W., et al., Pursuing "zero" protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009. 25(19): p. 11911-6.
29. Zhang, Z., et al., Zwitterionic Hydrogels: an in Vivo Implantation Study. Journal of Biomaterials Science, Polymer Edition, 2009. 20(13): p. 1845-1859.
30. Ishihara, K., T. Ueda, and N. Nakabayashi, Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes. Polymer Journal, 1990. 22(5): p. 355-360.
31. Lewis, A., L. Tolhurst, and P. Stratford, Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre-and post-implantation. Biomaterials, 2002. 23(7): p. 1697-1706.
32. Whelan, D., et al., Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart, 2000. 83(3): p. 338-345.
33. Ishihara, K., Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Science and Technology of Advanced Materials, 2000. 1(3): p. 131.
34. Kang, S., et al., Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Acta biomaterialia, 2016. 40: p. 70-77.
35. Aguilar-Vega, M., Structure and Mechanical Properties of Polymers, in Handbook of Polymer Synthesis, Characterization, and Processing. 2013. p. 425-434.
36. Gao, S., et al., Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS Applied Materials & Interfaces, 2019. 11(4): p. 4654-4666.
37. Sugiyama, F., et al., Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polymer chemistry, 2018. 9(33): p. 4354-4363.
38. Eslamian, M., A Mathematical Model for the Design and Fabrication of Polymer Solar Cells by Spray Coating. Drying Technology, 2013. 31(4): p. 405-413.
39. Zabihi, F., et al., Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Applied Surface Science, 2015. 338: p. 163-177.
40. Pham, N.P., J.N. Burghartz, and P.M. Sarro, Spray coating of photoresist for pattern transfer on high topography surfaces. Journal of Micromechanics and Microengineering, 2005. 15(4): p. 691-697.
41. Tobiska, S. and P. Kleinebudde, Coating Uniformity: Influence of Atomizing Air Pressure. Pharmaceutical Development and Technology, 2003. 8(1): p. 39-46.
42. Keller, S.S., et al., Deposition of biopolymer films on micromechanical sensors. Microelectronic Engineering, 2011. 88(8): p. 2297-2299.
43. Gohil, S.V., et al., Chapter 8 - Polymers and Composites for Orthopedic Applications, in Materials for Bone Disorders, S. Bose and A. Bandyopadhyay, Editors. 2017, Academic Press. p. 349-403.
44. Seo, J.-H., et al., Cell adhesion on phase-separated surface of block copolymer composed of poly (2-methacryloyloxyethyl phosphorylcholine) and poly (dimethylsiloxane). Biomaterials, 2009. 30(29): p. 5330-5340.
45. Lira, M., et al., Importance of contact lens power and thickness in oxygen transmissibility. Contact Lens and Anterior Eye, 2015. 38(2): p. 120-126.
指導教授 黃俊仁 李宇翔(Chun-Jun Huang Yu-Hsiang Lee) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明