博碩士論文 108827017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.36.141
姓名 郭柏緯(Pro-Wei Kuo)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
(Acrylic Peptides for Development of Bioactive Polymeric Materials for Medical Applications)
相關論文
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-15以後開放)
摘要(中) 由於胜肽的高選擇性,可由不同氨基酸組成的獨特性和可變性以及與蛋白質相比更易於生產的優點,最近胜肽的開發和應用受到了科學家的極大關注。在這裡,本研究開發有別以往胜肽與聚合物合成的方法和提供了兩種胜肽-聚合物偶聯物的生物活性材料。在第一部分中,固相胜肽合成(Solid phase peptide synthesis)用於合成由賴氨酸丙烯醯胺(Lysine acrylamide)和常規氨基酸組成的丙烯酸胜肽(acrylic peptides),來作為水凝膠的交聯劑,當使用胰蛋白酶處理時,胜肽可以被切割,開發出具有酶促降解的水凝膠。與N,N′-亞甲基雙丙烯醯胺(N,N′-Methylenebisacrylamide)交聯劑形成的水凝膠相比,發現在經過胰蛋白酶浸泡後,只有丙烯酸胜肽水凝膠會崩解,這在傷口敷料和藥物釋放應用上有很大的潛力。工作的第二部分透過6-Acrylamidohexanoic Acid來製備丙烯酸胜肽並與精氨酸-甘氨酸-天冬氨酸(RGD)的整合素(Integrin)識別配體結合在一起。RGD胜肽為一種細胞黏附序列,因為它易於與整合素相互作用。在這裡,將帶有丙烯酸胜肽-RGD配體的水凝膠和一般水凝膠在DMEM中與細胞共培養。以直立顯微鏡觀察水凝膠表面,結果表明具有丙烯酸胜肽-RGD配體的水凝膠有細胞黏附,與一般的水凝膠不同,透過丙烯酸胜肽-RGD配體的加入,可使原本不利於細胞生長的材料能支持細胞生長而更貼近體內條件,此可應用於修復功能性生物材料上。最後,利用衰減全反射傅立葉轉換紅外線光譜(ATR-FTIR)結構鑒定和X射線光電子能譜儀(XPS)表面元素分析來確認丙烯酸胜肽-RGD配體與水凝膠的聚合,和透過丙烯酸胜肽-RGD配體與螢光分子聚合成線性螢光高分子來標記細胞,證實丙烯酸胜肽-RGD配體與聚合物形成線性高分子時仍能與細胞作用。本研究開發了胜肽-聚合物偶聯物和其合成的策略,期望能將此應用於醫療方面並提供新的生物材料設計方法。
摘要(英) Due to the high selectivity of peptides, the uniqueness and variability that can be composed of different amino acids, and the advantages of easier production compared with proteins, the development and application of peptides have recently received great attention from scientists. Here, this study provides a method different from the previous synthetic methods of peptides and polymers and provides two peptide-polymer conjugates for bioactive polymeric materials. In the first part, solid phase peptide synthesis was applied for synthesizing acrylic peptides composed of Lysine acrylamide and conventional amino acids, as a crosslinker for hydrogels, then use nuclear magnetic resonance (NMR) and mass spectrometry (MS) to identify its chemical structure. The peptide can be cleaved when treating with trypsin, and the hydrogel with enzymatic degradation has been developed. Compared with the hydrogel formed by N,N′-Methylenebisacrylamide crosslinker, we found that after soaking in trypsin, only the acrylic peptide hydrogel disintegrated. The applications in biomimetic polymers such as biodegradable scaffolds and drug delivery has great potential. The second part of the work is to prepare acrylic peptides through 6-Acrylamidohexanoic Acid and combine them with the Integrin recognition ligand of arginine-glycine-aspartic acid (RGD). RGD peptide is a cell adhesion sequence because it is easy to interact with integrins. Here, the hydrogel with acrylic peptide-RGD ligand and general hydrogel are co-cultured with cells in DMEM. Observing the surface of the hydrogel with the optical microscope, the results presented that the hydrogel with acrylic peptide-RGD ligands has cell adhesion. Different from general hydrogels, the addition of acrylic peptide-RGD ligand can support cell growth with materials that are not conducive to cell growth, and closer to the conditions in vivo, this can be applied to the functional biomaterials for tissue repair. Finally, FT-IR structure identification and XPS surface element analysis were used to confirm the polymerization of acrylic peptide-RGD ligand and hydrogel, and through the polymerization of acrylic peptide-RGD ligand and fluorescent molecules into linear fluorescent polymers to label cells, confirming that acrylic peptide- RGD ligand and polymer can still interact with cells when they form a linear polymer. This research has developed peptide-polymer conjugates and their synthesis strategies. It is hoped that this can be applied to medical treatment and provide new biomaterial design methods.
關鍵字(中) ★ 丙烯酸胜肽
★ 精氨酸-甘氨酸-天冬氨酸
★ 胜肽-聚合物偶聯物
關鍵字(英) ★ Acrylic peptide
★ RGD
★ Peptide-polymer conjugates
論文目次 目錄
中文摘要....……....……………………………………………….……….……i
Abstract....……....………………………………………………………….….ii
目錄....……....………………………………………………………………….iv
圖目錄....……....…………………………………………………………...….ix
表目錄....……....………………………………………………………….…...xi
第一章 文獻回顧………………….......……....……………….…….………1
1-1 氨基酸………….………….…..…..……..……………….……………1
1-2 胜肽(Peptide)……..……...………….……………………………….…2
1-2-1胜肽的功能與發展………………………………….……...……….3
1-2-2 胜肽的應用.…………….…………...…………………………….5
1-2-3 固相胜肽合成(Solid-phase peptide synthesis,SPPS)……...…….6
1-2-4 胺基酸保護基(Amino Acid-Protecting Groups)………...…...……7
1-2-5 精甘天冬氨酸胜肽(RGD peptide)…………………………………8
1-2-6 整聯蛋白(Integrin)………...……………………………………….9
1-3 水凝膠(Hydrogel)….…..………………….……………………………9
1-3-1 水凝膠的聚合…………….….………..………………….…….…10
1-4 兩性離子(Zwitterion)…………………………………….....……...…11
1-4-1 2-甲基丙烯醯氧基乙基磷酸膽鹼(MPC)聚合物……..…...…....12
1-5 胜肽與聚合物的合成…….…….…………………………….………13
1-5-1 胜肽-聚合物聚合方法之比較…..……………………………….18
1-6 胜肽-聚合物偶聯物…………………………………………………..19
1-6-1 胜肽-聚合物偶聯物之研究..…………………………………….20
1-7 生物性材料……………………………………………………...……21
1-7-1 生物性材料的條件和應用……………………………………….21
1-8 基於胜肽的生物性材料……………………………………………...22
第二章 研究目的…………………………………………………..….……24
第三章 實驗藥品與設備及實驗方法…………..……..……….……….25
3-1 實驗藥品與設備……………………………….…..…………………25
3-2 材料合成………………………………………...……………………28
3-2-1 丙烯酸賴氨酸(Lysine acrylate acid)………….…….…………...28
3-2-2 9-芴甲氧羰醯氯-丙烯酸賴氨酸(FMOC-Lysine acrylate acid).29
3-2-3 2-甲基丙烯醯氧基乙基磷酸膽鹼水凝膠(2-Methacryloyloxyethyl. phosphorylcholine (MPC) Hydrogel)…..29
3-2-4 丙烯酸P5胜肽作為交聯劑之MPC水凝膠………………….30
3-2-5 丙烯酸P3-RGD胜肽之MPC水凝膠…………………………30
3-2-6 矽烷化玻璃製備…………………………………..……………31
3-2-7 丙烯酸P3-RGD胜肽之螢光高分子(Poly(MPC-r-P3-r-MTR)……………………………………………………………32
3-3 實驗方法……………..……………………….………………………33
3-3-1 選擇9-芴甲氧羰醯氯-丙烯酸賴氨酸(FMOC-LysAA)之沖堤劑………………………………………………..……..………...33
3-3-2 9-芴甲氧羰醯氯-丙烯酸賴氨酸(FMOC-LysAA)之純化……..34
3-3-3 FMOC-LysAA於高溫下在各時間的測試……………...……..35
3-3-4 DMEM配置……….……..…………………………….……….35
3-3-5 NIH-3T3細胞培養…….……………………….……………….36
3-3-6 液相層析質譜儀(LC-MS)………….....……..……………...36
3-3-7 衰減全反射傅立葉轉換紅外線光譜(ATR-FTIR)……….…37
3-3-8 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS)…………………………………….………..……………37
3-3-9 丙烯酸P5胜肽水凝膠之降解測試………..….………..….….37
3-3-10 丙烯酸P3-RGD胜肽水凝膠之細胞貼附測試…………….….38
3-3-11 丙烯酸P3-RGD胜肽之螢光高分子標記細胞………………..38
3-3-12 統計分析….……………………………………………..…..…38
第四章 結果與討論…………………...………………...………………....39
4-1 Lysine acrylate acid之NMR光譜圖……...…………………………39
4-1-1 Lysine acrylate acid之質譜圖………………..……….…………40
4-1-2 Lysine acrylate acid之ATR-FTIR光譜圖………...……...…….40
4-2 FMOC-LysAA之NMR光譜圖……………………………………...41
4-2-1 FMOC-LysAA之質譜圖……………………………………..….42
4-2-2 FMOC-LysAA之ATR-FTIR光譜圖…………...………………43
4-3 FMOC-LysAA之總離子流(TIC)色譜圖….…………...………....43
4-3-1 FMOC-LysAA之提取離子(EIC)色譜圖…………......……...44
4-4 FMOC-LysAA薄層層析之沖堤劑…............................................…..45
4-4-1 FMOC-LysAA管柱層析之UV-Vis光譜圖…….……………...46
4-4-2 FMOC-LysAA純化前後之NMR光譜圖…………...….……....47
4-4-3 FMOC-LysAA純化前後之HPLC-質譜圖…………….....…..…48
4-5 FMOC-LysAA對於高溫環境下的影響…..….……….......................49
4-6 MPC水凝膠與丙烯酸P3-RGD胜肽水凝膠之FT-IR光譜圖…......50
4-7 MPC水凝膠與丙烯酸P3-RGD胜肽水凝膠之表面元素分析……..51
4-8 MPC水凝膠與丙烯酸P5胜肽水凝膠之降解測試比較……………53
4-9 MPC水凝膠與丙烯酸P3-RGD胜肽水凝膠之細胞貼附比較……..55
4-9-1 MPC水凝膠與丙烯酸P3-RGD胜肽水凝膠之細胞生長比較...57
4-10 Poly(MPC-r-P3-r-MTR)之NMR光譜圖…….…………...………...60
4-10-1 Poly(MPC-r-P3-r-MTR)與Poly(MPC-r-MTR)之NMR光譜圖.61
4-10-2 Poly(MPC-r-P3-r-MTR)與Poly(MPC-r-MTR)之FT-IR光譜 圖…...…………...….…………...….…………...….……….………...…62
4-11 丙烯酸P3胜肽之螢光高分子標記細胞..............................................63
第五章 結論…………………………………………………………………65
第六章 未來展望……………………………………...……………………66
第七章 參考文獻………….…………………………………..……………67
參考文獻 參考文獻
1. Kandasamy, P., et al., Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences, 2018. 43(10): p. 752-789.
2. Craik, D.J., et al., The Future of Peptide-based Drugs. Chemical Biology & Drug Design, 2013. 81(1): p. 136-147.
3. Seo, M.D., et al., Antimicrobial Peptides for Therapeutic Applications: A Review. Molecules, 2012. 17(10): p. 12276-12286.
4. Bechara, C. and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? Febs Letters, 2013. 587(12): p. 1693-1702.
5. Wang, W.Z. and Z.Y. Hu, Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. Advanced Materials, 2019. 31(45).
6. Lundberg, P. and U. Langel, A brief introduction to cell-penetrating peptides. Journal of Molecular Recognition, 2003. 16(5): p. 227-233.
7. Midoux, P. and M. Monsigny, Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjugate Chemistry, 1999. 10(3): p. 406-411.
8. Robbins, J., et al., Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell, 1991. 64(3): p. 615-23.
9. Lee, A.C., et al., A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int J Mol Sci, 2019. 20(10).
10. Zhang, W., et al., Peptide-based nanomaterials for gene therapy. Nanoscale Advances, 2021. 3(2): p. 302-310.
11. Rastogi, S., et al., Peptide-based therapeutics: quality specifications, regulatory considerations, and prospects. Drug Discov Today, 2019. 24(1): p. 148-162.
12. Boohaker, R.J., et al., The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem, 2012. 19(22): p. 3794-804.
13. Dehsorkhi, A., V. Castelletto, and I.W. Hamley, Self-assembling amphiphilic peptides. J Pept Sci, 2014. 20(7): p. 453-67.
14. Hos, B.J., et al., Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol, 2018. 9: p. 884.
15. Handford, B.O., et al., Amino acids and peptides. IX. Synthesis of a tetrapeptide sequence (A13-A16) of glucagon. J Org Chem, 1967. 32(4): p. 1243-6.
16. Pedersen, S.L., et al., Microwave heating in solid-phase peptide synthesis. Chemical Society Reviews, 2012. 41(5): p. 1826-1844.
17. Behrendt, R., P. White, and J. Offer, Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science, 2016. 22(1): p. 4-27.
18. Isidro-Llobet, A., M. Alvarez, and F. Albericio, Amino Acid-Protecting Groups. Chemical Reviews, 2009. 109(6): p. 2455-2504.
19. Harris, P.W.R. and M.A. Brimble, A Comparison of Boc and Fmoc SPPS Strategies for the Preparation of C-Terminal Peptide alpha-Thiolesters: NY-ESO-1 (39)Cys-(68)Ala-COSR. Biopolymers, 2013. 100(4): p. 356-365.
20. Ruoslahti, E. and B. Obrink, Common principles in cell adhesion. Experimental Cell Research, 1996. 227(1): p. 1-11.
21. Hynes, R.O., Integrins: Bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673-687.
22. von der Mark, K., et al., Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell and Tissue Research, 2010. 339(1): p. 131-153.
23. Aota, S., T. Nagai, and K.M. Yamada, Characterization of Regions of Fibronectin Besides the Arginine-Glycine-Aspartic Acid Sequence Required for Adhesive Function of the Cell-Binding Domain Using Site-Directed Mutagenesis. Journal of Biological Chemistry, 1991. 266(24): p. 15938-15943.
24. Garanger, E., D. Boturyn, and P. Dumy, Tumor targeting with RGD peptide Ligands-Design of new molecular conjugates for Imaging and therapy of cancers. Anti-Cancer Agents in Medicinal Chemistry, 2007. 7(5): p. 552-558.
25. Chen, K. and X.Y. Chen, Integrin Targeted Delivery of Chemotherapeutics. Theranostics, 2011. 1: p. 189-200.
26. Warren, D.S., et al., The Preparation and Simple Analysis of a Clay Nanoparticle Composite Hydrogel. Journal of Chemical Education, 2017. 94(11): p. 1772-1779.
27. Berger, J., et al., Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 35-52.
28. Berger, J., et al., Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 57(1): p. 19-34.
29. Shin, J., P.V. Braun, and W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensors and Actuators B-Chemical, 2010. 150(1): p. 183-190.
30. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 2015. 6(2): p. 105-121.
31. Hamidi, M., A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1638-1649.
32. Chen, X., et al., Enzymatic and chemoenzymatic approaches to synthesis of sugar based polymer and hydrogels. Carbohydrate Polymers, 1995. 28(1): p. 15-21.
33. Wang, F., et al., Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomaterialia, 2010. 6(6): p. 1978-1991.
34. Stamatialis, D.F., et al., Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 2008. 308(1-2): p. 1-34.
35. Tabata, Y., Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009. 6: p. S311-S324.
36. Bajpai, S.K., Swelling studies on hydrogel networks - A review. Journal of Scientific & Industrial Research, 2001. 60(6): p. 451-462.
37. Mathur, A.M., S.K. Moorjani, and A.B. Scranton, Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1996. C36(2): p. 405-430.
38. Colilla, M., I. Izquierdo-Barba, and M. Vallet-Regi, The Role of Zwitterionic Materials in the Fight against Proteins and Bacteria. Medicines (Basel), 2018. 5(4).
39. Blackman, L.D., et al., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chemical Society Reviews, 2019. 48(3): p. 757-770.
40. Ishihara, K., et al., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999. 20(17): p. 1553-1559.
41. Iwasaki, Y., et al., Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Journal of Biomedical Materials Research, 2000. 52(4): p. 701-708.
42. Ishihara, K., et al., Improvement of Blood Compatibility on Cellulose Dialysis Membrane .2. Blood Compatibility of Phospholipid Polymer Grafted Cellulose Membrane. Biomaterials, 1992. 13(4): p. 235-239.
43. Asif, S., et al., Validation of an MPC Polymer Coating to Attenuate Surface-Induced Crosstalk between the Complement and Coagulation Systems in Whole Blood in In Vitro and In Vivo Models. Macromolecular Bioscience, 2019. 19(5).
44. Goda, T. and K. Ishihara, Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 2006. 3(2): p. 167-174.
45. Feng, C., et al., Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chemical Society Reviews, 2011. 40(3): p. 1282-1295.
46. Cui, Z., et al., Molecular engineering of antimicrobial peptide (AMP)-polymer conjugates. Biomater Sci, 2021. 9(15): p. 5069-5091.
47. Zhao, M.Z., et al., An "In Vivo Self-assembly" Strategy for Constructing Superstructures for Biomedical Applications. Chinese Journal of Polymer Science, 2018. 36(10): p. 1103-1113.
48. Pawbake, A.S., et al., Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications. Acs Applied Materials & Interfaces, 2016. 8(5): p. 3359-3365.
49. Hartlieb, M., et al., Stimuli-responsive membrane activity of cyclic-peptide-polymer conjugates. Chemical Science, 2019. 10(21): p. 5476-5483.
50. Kricheldorf, H.R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angewandte Chemie-International Edition, 2006. 45(35): p. 5752-5784.
51. Messina, M.S., et al., Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Progress in Polymer Science, 2020. 100.
52. Sun, H., et al., Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies. Bioconjugate Chemistry, 2019. 30(7): p. 1889-1904.
53. Hamley, I.W., PEG-peptide conjugates. Biomacromolecules, 2014. 15(5): p. 1543-59.
54. Chen, R.T., et al., Surface "click" chemistry on brominated plasma polymer thin films. Langmuir, 2010. 26(5): p. 3388-93.
55. Pisoni, R.L., et al., A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J Cell Biol, 1990. 110(2): p. 327-35.
56. Tzokova, N., et al., The effect of PEO length on the self-assembly of poly(ethylene oxide)-tetrapeptide conjugates prepared by "Click" chemistry. Langmuir, 2009. 25(18): p. 11082-9.
57. Brzezinska, K.R. and T.J. Deming, Synthesis of AB diblock copolymers by atom-transfer radical polymerization (ATRP) and living polymerization of alpha-amino acid-N-carboxyanhydrides. Macromol Biosci, 2004. 4(6): p. 566-9.
58. Shu, J.Y., B. Panganiban, and T. Xu, Peptide-polymer conjugates: from fundamental science to application. Annu Rev Phys Chem, 2013. 64: p. 631-57.
59. Zhu, J., et al., Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules, 2018. 23(12).
60. Jangamreddy, J.R., et al., Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater, 2018. 69: p. 120-130.
61. Li, L., J. Wu, and C. Gao, Gradient immobilization of a cell adhesion RGD peptide on thermal responsive surface for regulating cell adhesion and detachment. Colloids Surf B Biointerfaces, 2011. 85(1): p. 12-8.
62. Kim, S., S. Wan Kim, and Y.H. Bae, Synthesis, bioactivity and specificity of glucagon-like peptide-1 (7-37)/polymer conjugate to isolated rat islets. Biomaterials, 2005. 26(17): p. 3597-606.
63. Abdelhamid, M.A.A. and S.P. Pack, Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomaterialia, 2021. 120: p. 38-56.
64. Agarwal, R. and A.J. Garcia, Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Advanced Drug Delivery Reviews, 2015. 94: p. 53-62.
65. Kirkpatrick, C.J., et al., Experimental approaches to study vascularization in tissue engineering and biomaterial applications. Journal of Materials Science-Materials in Medicine, 2003. 14(8): p. 677-681.
66. Ranade, S.V., R.E. Richard, and M.N. Helmus, Styrenic block copolymers for biomaterial and drug delivery applications. Acta Biomaterialia, 2005. 1(1): p. 137-144.
67. Ma, P.X., Biomimetic materials for tissue engineering. Advanced Drug Delivery Reviews, 2008. 60(2): p. 184-198.
68. Taraballi, F., et al., Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Advanced Healthcare Materials, 2018. 7(17).
69. Chen, F.M. and X.H. Liu, Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016. 53: p. 86-168.
70. Webber, M.J., J.A. Kessler, and S.I. Stupp, Emerging peptide nanomedicine to regenerate tissues and organs. Journal of Internal Medicine, 2010. 267(1): p. 71-88.
71. Hosoyama, K., et al., Peptide-Based Functional Biomaterials for Soft-Tissue Repair. Frontiers in Bioengineering and Biotechnology, 2019. 7.
72. Nagaoka, S., et al., Method for a convenient and efficient synthesis of amino acid acrylic monomers with zwitterionic structure. Synthetic Communications, 2005. 35(19): p. 2529-2534.
73. Li, W.Y., et al., The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis - Its Past, Present, and Future. Australian Journal of Chemistry, 2020. 73(4): p. 271-276.
74. Nowick, J.S., et al., Fmoc*: A more soluble analog of the 9-fluorenylmethoxycarbonyl protecting group. Abstracts of Papers of the American Chemical Society, 2000. 219: p. U113-U113.
75. Yang, W., et al., The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials, 2012. 33(32): p. 7945-7951.
76. Majors, R.E., Thin-Layer Chromatography - a Survey of the Experts. Lc Gc-Magazine of Separation Science, 1990. 8(10): p. 760-&.
77. Dev, S.B. and L. Walters, Fourier-Transform Infrared-Spectroscopy for the Characterization of a Model Peptide - DNA Interaction. Biopolymers, 1990. 29(1): p. 289-299.
78. Stevens, J.S., et al., Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surface and Interface Analysis, 2013. 45(8): p. 1238-1246.
79. Biau, D.J., In Brief: Standard Deviation and Standard Error. Clinical Orthopaedics and Related Research, 2011. 469(9): p. 2661-2664.
80. Bacsa, B., et al., Solid-phase synthesis of difficult peptide sequences at elevated temperatures: A critical comparison of microwave and conventional heating technologies. Journal of Organic Chemistry, 2008. 73(19): p. 7532-7542.
81. Leiros, H.K.S., et al., Trypsin specificity as elucidated by LIE calculations, X-ray structures, and association constant measurements. Protein Science, 2004. 13(4): p. 1056-1070.
82. Adak, A., et al., Biodegradable Neuro-Compatible Peptide Hydrogel Promotes Neurite Outgrowth, Shows Significant Neuroprotection, and Delivers Anti-Alzheimer Drug. ACS Appl Mater Interfaces, 2017. 9(6): p. 5067-5076.
83. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
84. Levental, I., P.C. Georges, and P.A. Janmey, Soft biological materials and their impact on cell function. Soft Matter, 2007. 3(3): p. 299-306.
85. Goda, T., Y. Goto, and K. Ishihara, Cell-penetrating macromolecules: direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials, 2010. 31(8): p. 2380-7.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2021-12-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明