博碩士論文 108827602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.145.93.210
姓名 陳氏英紅(Tran Thi Anh Hong)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Development of Functional Biointerface by Mixed Oligomeric Silatranes)
相關論文
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 如今,生物感測器隨著醫療、病原體檢測、環境監測、食品安全檢測等廣泛應用而變得越來越重要。然而,這些樣品的成分相當複雜,會產生嚴重的背景信號導致,生物感測器受到影響。同時,在“非特異性吸附”造成降低靈敏度和特異性造成嚴重的問題。因此,通過低聚物氮矽三環(Oligomeric silatrans)對生物感測器進行表面修飾是改善這些問題的常用方法。巰基氮矽三環 (MPS) 是一種包含三環籠狀結構和跨環 N→Si 配鍵的化合物,提供可被控制的矽烷化並得到更均勻的薄膜。在本研究中,2-甲基丙烯醯氧基乙基磷醯膽鹼(MPC)或羧化聚乙二醇甲基丙烯酸酯(Carboxylated-PEGMA)將通過硫醇-烯加成反應與MPS進行化學鍵結,形成兩種低聚物氮矽三環MPS-MPCn和MPS-Carboxylated PEGMAm其具有各自獨立的功能。除此之外,MPC為雙離子材料,具有優異的抗汙性和良好的生物相容性。因此,在MPS-MPC2.5修飾後進行抗汙測試表現出優異的細菌粘附和蛋白質吸附的抵抗力。此外,低聚物 MPS-Carboxylated PEGMA2.5 作為大分子包含大量的羧基,通過共價鍵轉化為可功能化的中間體使其具有生物選擇性的表面。在生物檢測研究中,通過將 70% MPS-Carboxylated PEGMA2.5 和 30% MPS-MPC2.5 按濃度比例混合進行表面修飾,可以顯著減少非特異性吸附,並通過酵素結合免疫吸附試驗(ELISA)形成傳感表面。在大範圍的濃度測試中,混合的自組裝塗層表面在 25 µg/mL 至 1000 µg/mL 的多種抗原濃度範圍內展現出牛血清白蛋白(BSA)濃度與檢測信號之間的非線性關係,同時表現出與表面活性位點相連的生物受體從 5.5 µg/mL 到 27.5 µg/mL 的 HRP 偶聯二級抗體檢測的線性關係。因此,混合低聚物氮矽三環單一塗層是一種潛在的生物感測器表面改質 方法,因其優秀的抗汙性能,可通過稀釋表面分子密度來提高目標檢測能力
摘要(英) Nowadays, biosensor becomes more and more important along with a wide range of applications, including medical, pathogen discovery, environmental monitoring, food quality testing, etc. However, the components of these samples are quite complex and generate a serious background signal at the interface of biosensors. In addition, reducing sensitivity and specificity through non-specific adsorption of the biosensor are also a serious issue. Therefore, surface modification for biosensors via oligomeric silatranes has been developed to address these problems. Mercaptopropylsilatrane (MPS) is one type of silatranes containing the tricyclic caged structure and transannular N→Si dative bond that enables control silanization and provides thin homogeneous films. In this study, 2-methacryloyloxyethyl phosphorylcholine (MPC) and carboxylated poly(ethylene glycol) methacrylate (Carboxylated-PEGMA) can chemically linked with MPS through thiol-ene polymerization to form two kinds of copolymer MPS-MPCn and MPS-Carboxylated PEGMAm with independent functions. MPC is known as zwitterionic materials with excellent antifouling and good biocompatibility properties. Oligomeric MPS-MPC2.5 shows the excellent resistance of both bacterial adhesion and protein adsorption after modification. Moreover, oligomeric MPS-Carboxylated PEGMA2.5 as a bulky structure contains large carboxyl groups transforming into a functional intermediated product for bio-recognition elements by amine coupling chemistry. In the target detection study, surface modification by mixing 70% MPS-Carboxylated PEGMA2.5 and 30% MPS-MPC2.5 in the molar ratio could reduce significantly non-specific adsorption and develop a sensing surface in the enzyme-linked immunosorbent assay (ELISA). In a wide range of concentration tests, mixed oligomeric coatings demonstrated a non-linear response between bovine serum albumin concentration and detection signal in the multiple antigen concentrations from 25 µg/mL to 1000 µg/mL. In addition, it provided a linear response from 5.5 µg/mL to 27.5 µg/mL of HRP conjugated secondary antibody detection through a bioreceptor connected with an active site on the surface. Therefore, mixed oligomeric silatranes coatings are a potential approach to establish the interfacial system for biosensors because of the antifouling properties, improving target detection capability by increasing carboxyl group molecule surface’s density.
關鍵字(中) ★ 自組裝單層
★ 非特異性吸附
★ 雙離子材料
★ 抗汙性能
★ 2-甲基丙烯酰氧乙基磷酰胆碱 (MPC)
★ 巯基丙基硅油烷 (MPS)
關鍵字(英) ★ Self-assembled monolayer
★ nonspecific adsorption
★ zwitterionic materials
★ antifouling properties
★ 2-methacryloyloxyethyl phosphorylcholine (MPC)
★ mercaptopropylsilatrane (MPS).
論文目次 CHINESE ABSTRACT i
ABSTRACT iii
LIST OF FIGURES viii
LIST OF TABLES xii
LIST OF ABBREVIATIONS xiii
Chapter I: INTRODUCTION 1
1-1 BIOSENSOR 1
1-1-1 Classification base on the biological signal of biosensor 2
1-1-2 Factors affecting the signal of biosensor 3
1-2 Self-assembled monolayer (SAMs) 5
1-2-1 Silane functional group 6
1-2-2 Silatrane functional group 11
1-2-3 Mixed self-assembled monolayer (Mixed SAMs) 17
1-3 Antifouling materials 19
1-3-1 Nonspecific adsorption 19
1-3-2 Polyethylene glycol material 20
1-3-3 Zwitterionic materials 21
1-4 Thiol-ene polymerization 24
1-5 Methods of protein immobilization 25
1-6 Bovine serum albumin (BSA) immobilization on the surface 27
CHAPTER II: RESEARCH OBJECTIVES 29
Chapter III. MATERIALS AND METHOD 30
3-1 MATERIALS 30
3-1-1 Chemicals 30
3-1-2 Equipments 30
3-2 SYNTHESIS 31
3-2-1 Mercaptonitrosilyl tricyclic (MPS) 31
3-2-2 Carboxylated Poly(ethylene glycol) methacrylate 31
3-2-3 Copolymer MPS-MPCn and MPS-Carboxylated PEGMAm 32
3-3 EXPERIMENTAL METHOD 33
3-3-1 Pre-treatment of substrate 33
3-3-2 Preparation of self-assembled monolayer 34
3-3-3 Water contact angle measurement 34
3-3-4 Attenuated Total Reflectance-Fourier Transform Infrared spectrum (ATR-FTIR) measurement 35
3-3-5 Ellipsometer measurement 35
3-3-6 X-ray photoelectron spectroscopy (XPS) measurement 35
3-3-7 Hydrogen-1 Nuclear Magnetic Resonance Spectrometer (1H NMR) 35
3-3-8 Bacteria adhesion test 35
3-3-9 Protein adsorption test (Antifouling property) 36
3-3-10 Target detection ability 36
CHAPTER IV: RESULTS AND DISCUSSION 39
4-1 Investigating the antifouling properties of different chain lengths of MPS-MPCn modified silicon wafer 39
4-1-1 1H NMR spectrum of monomer MPS 39
4-1-2 1H NMR spectrum of oligomeric silatranes MPS-MPCn 40
4-1-3 Thickness measurement of different ratio MPS-MPCn 42
4-1-4 Contact angle measurement of MPS-MPCn 43
4-1-5 Protein adsorption test of MPS-MPCn modified sample 45
4-1-6 Bacterial adhesion test on MPS-MPCn modified sample 46
4-2 Biomolecule detection assay of mixing MPS-MPC2.5 and MPS Carboxylated PEGMAm 49
4-2-1 NMR spectrum of Carboxylated PEGMA 49
4-2-2 ATR-FTIR spectrum analysis of Carboxylated PEGMA and PEGMAOH 51
4-2-3 1H NMR spectra of MPS-carboxylated PEGMAm 53
4-2-4 XPS measurement of single oligomeric coating and mixed oligomeric coating after modified substrate 55
4-2-5 Contact angle measurement of MPS-carboxylated PEGMAm and mixed oligomeric coatings 57
4-2-6 Thickness measurement of MPS-carboxylated PEGMAm and mixed oligomeric coatings 58
4-2-7 The influence of different pH on BSA immobilization using ELISA) 59
4-2-8 The capability of BSA immobilization of single coatings and mixed coatings using ELISA 61
4-2-9 Exploring the influence of different concentration of BSA target on detection signal using ELISA 63
4-2-10 The ability of antibody detection of active site Carboxylated PEGMA 64
4-2-11 Investigating the relationship between the different concentration of antibody on detection signal (ELISA) 67
CHAPTER 5: CONCLUSION 68
CHAPTER 6: FUTURE PERSPECTIVES 69
REFERENCE 70
參考文獻 [1] D. R. Thévenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: Recommended definitions and classification,” Biosens. Bioelectron., vol. 16, no. 1–2, pp. 121–131, 2001, doi: 10.1016/S0956-5663(01)00115-4.
[2] G. Luka et al., “Microfluidics integrated biosensors: A leading technology towards lab-on-A-chip and sensing applications,” Sensors (Switzerland), vol. 15, no. 12, pp. 30011–30031, 2015, doi: 10.3390/s151229783.
[3] M. E. E. Alahi and S. C. Mukhopadhyay, “Detection methodologies for pathogen and toxins: A review,” Sensors (Switzerland), vol. 17, no. 8, pp. 1–20, 2017, doi: 10.3390/s17081885.
[4] V. Perumal and U. Hashim, “Advances in biosensors: Principle, architecture and applications,” J. Appl. Biomed., vol. 12, no. 1, pp. 1–15, 2014, doi: 10.1016/j.jab.2013.02.001.
[5] P. Mehrotra, “Biosensors and their applications - A review,” J. Oral Biol. Craniofacial Res., vol. 6, no. 2, pp. 153–159, 2016, doi: 10.1016/j.jobcr.2015.12.002.
[6] Y. Zhou, Y. Fang, and R. P. Ramasamy, “Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020392.
[7] D. Bizzotto, I. J. Burgess, T. Doneux, T. Sagara, and H. Z. Yu, “Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces,” ACS Sensors, vol. 3, no. 1, pp. 5–12, 2018, doi: 10.1021/acssensors.7b00840.
[8] J. Y. Lichtenberg, Y. Ling, and S. Kim, “Non-specific adsorption reduction methods in biosensing,” Sensors (Switzerland), vol. 19, no. 11, pp. 1–17, 2019, doi: 10.3390/s19112488.
[9] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology, vol. 105, no. 4. 2005.
[10] A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” 1996.
[11] N. Faucheux, R. Schweiss, K. Lützow, C. Werner, and T. Groth, “Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies,” Biomaterials, vol. 25, no. 14, pp. 2721–2730, 2004, doi: 10.1016/j.biomaterials.2003.09.069.
[12] R. Chang et al., “Water near bioinert self-assembled monolayers,” Polym. J., vol. 50, no. 8, pp. 563–571, 2018, doi: 10.1038/s41428-018-0075-1.
[13] A. Chandekar, S. K. Sengupta, and J. E. Whitten, “Thermal stability of thiol and silane monolayers: A comparative study,” Appl. Surf. Sci., vol. 256, no. 9, pp. 2742–2749, 2010, doi: 10.1016/j.apsusc.2009.11.020.
[14] M. Cerruti, S. Fissolo, C. Carraro, C. Ricciardi, A. Majumdar, and R. Maboudian, “Poly(ethylene glycol) monolayer formation and stability on gold and silicon nitride substrates,” Langmuir, vol. 24, no. 19, pp. 10646–10653, 2008, doi: 10.1021/la801357v.
[15] R. S. C. Woo, H. Zhu, M. M. K. Chow, C. K. Y. Leung, and J. K. Kim, “Barrier performance of silane-clay nanocomposite coatings on concrete structure,” Compos. Sci. Technol., vol. 68, no. 14, pp. 2828–2836, 2008, doi: 10.1016/j.compscitech.2007.10.028.
[16] G. L. Witucki, “BACK TO BASICS A Silane Primer: Chemistry and Applications of AIkoxy Silanes,” October, vol. 65, no. 822, pp. 57–60, 1992, [Online]. Available: http://www.mendeley.com/research/a-silane-primer-chemistry-and-applications-of-aikoxy-silanes/.
[17] S. Minko, “Grafting on solid surfaces: Grafting to and grafting from methods,” Polym. Surfaces Interfaces Charact. Modif. Appl., pp. 215–234, 2008, doi: 10.1007/978-3-540-73865-7_11.
[18] M. Kim, S. K. Schmitt, J. W. Choi, J. D. Krutty, and P. Gopalan, “From self-assembled monolayers to coatings: Advances in the synthesis and nanobio applications of polymer brushes,” Polymers (Basel)., vol. 7, no. 7, pp. 1346–1378, 2015, doi: 10.3390/polym7071346.
[19] S. Goyal, “Silanes: Chemistry and applications,” J. Indian Prosthodont. Soc., vol. 6, no. 1, pp. 14–18, 2006, doi: 10.4103/0972-4052.25876.
[20] M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir, vol. 28, no. 1, pp. 416–423, 2012, doi: 10.1021/la203638g.
[21] T. J. Lee, L. K. Chau, and C. J. Huang, “Controlled Silanization: High Molecular Regularity of Functional Thiol Groups on Siloxane Coatings,” Langmuir, vol. 36, no. 21, pp. 5935–5943, 2020, doi: 10.1021/acs.langmuir.0c00745.
[22] M. W. Schmidt, T. L. Windus, and M. S. Gordon, “Structural Trends in Silicon Atranes,” J. Am. Chem. Soc., vol. 117, no. 28, pp. 7480–7486, 1995, doi: 10.1021/ja00133a020.
[23] V. Pestunovich, S. Kirpichenko, and M. Voronkov, Silatranes and their Tricyclic Analogs. 2009.
[24] J. K. Puri, R. Singh, and V. K. Chahala, “Silatranes: A review on their synthesis, structure, reactivity and applications,” Chem. Soc. Rev., vol. 40, no. 3, pp. 1791–1840, 2011, doi: 10.1039/b925899j.
[25] Y. T. Tseng, H. Y. Lu, J. R. Li, W. J. Tung, W. H. Chen, and L. K. Chau, “Facile Functionalization of Polymer Surfaces in Aqueous and Polar Organic Solvents via 3-Mercaptopropylsilatrane,” ACS Appl. Mater. Interfaces, vol. 8, no. 49, pp. 34159–34169, 2016, doi: 10.1021/acsami.6b13926.
[26] V. Lacour, K. Moumanis, W. M. Hassen, C. Elie-Caille, T. Leblois, and J. J. Dubowski, “Formation Kinetics of Mixed Self-Assembled Monolayers of Alkanethiols on GaAs(100),” Langmuir, vol. 35, no. 13, pp. 4415–4427, 2019, doi: 10.1021/acs.langmuir.7b00929.
[27] A. Hasan and L. M. Pandey, Self-assembled monolayers in biomaterials. Elsevier Ltd., 2018.
[28] F. Frederix et al., “Enhanced performance of an affinity biosensor interface based on mixed self-assembled monolayers of thiols on gold,” Langmuir, vol. 19, no. 10, pp. 4351–4357, 2003, doi: 10.1021/la026908f.
[29] Y. S. Wang, S. Yau, L. K. Chau, A. Mohamed, and C. J. Huang, “Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications,” Langmuir, vol. 35, no. 5, pp. 1652–1661, 2019, doi: 10.1021/acs.langmuir.8b01779.
[30] P. Lin, C. W. Lin, R. Mansour, and F. Gu, “Improving biocompatibility by surface modification techniques on implantable bioelectronics,” Biosens. Bioelectron., vol. 47, pp. 451–460, 2013, doi: 10.1016/j.bios.2013.01.071.
[31] S. Chen, L. Li, C. Zhao, and J. Zheng, “Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials,” Polymer (Guildf)., vol. 51, no. 23, pp. 5283–5293, 2010, doi: 10.1016/j.polymer.2010.08.022.
[32] M. J. Roberts, M. D. Bentley, and J. M. Harris, “Chemistry for peptide and protein PEGylation,” Adv. Drug Deliv. Rev., vol. 64, no. SUPPL., pp. 116–127, 2012, doi: 10.1016/j.addr.2012.09.025.
[33] Y. Y. Luk, M. Kato, and M. Mrksich, “Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment,” Langmuir, vol. 16, no. 24, pp. 9604–9608, 2000, doi: 10.1021/la0004653.
[34] J. M. Harris, “Introducdon to Blotechnlcal and Biomedical Appllcadons of Poly ( Ethylene Glycol ),” no. 1, pp. 1–14.
[35] I. Francolini, I. Silvestro, V. Di Lisio, A. Martinelli, and A. Piozzi, “Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers,” Int. J. Mol. Sci., vol. 20, no. 4, 2019, doi: 10.3390/ijms20041001.
[36] B. Mizrahi et al., “Long-lasting antifouling coating from multi-armed polymer,” Langmuir, vol. 29, no. 32, pp. 10087–10094, 2013, doi: 10.1021/la4014575.
[37] X. Ding et al., “Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers,” Biomaterials, vol. 33, no. 28, pp. 6593–6603, 2012, doi: 10.1016/j.biomaterials.2012.06.001.
[38] S. Lowe, N. M. O’Brien-Simpson, and L. A. Connal, “Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates,” Polym. Chem., vol. 6, no. 2, pp. 198–212, 2015, doi: 10.1039/c4py01356e.
[39] M. Li, B. Zhuang, and J. Yu, “Functional Zwitterionic Polymers on Surface: Structures and Applications,” Chem. - An Asian J., vol. 15, no. 14, pp. 2060–2075, 2020, doi: 10.1002/asia.202000547.
[40] L. D. Blackman, P. A. Gunatillake, P. Cass, and K. E. S. Locock, “An introduction to zwitterionic polymer behavior and applications in solution and at surfaces,” Chem. Soc. Rev., vol. 48, no. 3, pp. 757–770, 2019, doi: 10.1039/c8cs00508g.
[41] N. Shahkaramipour, T. N. Tran, S. Ramanan, and H. Lin, “Membranes with surface-enhanced antifouling properties for water purification,” Membranes (Basel)., vol. 7, no. 1, pp. 1–18, 2017, doi: 10.3390/membranes7010013.
[42] J. B. Schlenoff, “Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption,” Langmuir, vol. 30, no. 32, pp. 9625–9636, 2014, doi: 10.1021/la500057j.
[43] L. Zheng, H. S. Sundaram, Z. Wei, C. Li, and Z. Yuan, “Applications of zwitterionic polymers,” React. Funct. Polym., vol. 118, no. June, pp. 51–61, 2017, doi: 10.1016/j.reactfunctpolym.2017.07.006.
[44] vahid salimian Rizi, “Ce Pte Us Pt,” Mater. Res. Express, pp. 0–12, 2019.
[45] K. Hirota, K. Murakami, K. Nemoto, and Y. Miyake, “Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms,” FEMS Microbiol. Lett., vol. 248, no. 1, pp. 37–45, 2005, doi: 10.1016/j.femsle.2005.05.019.
[46] Y. Xu, M. Takai, and K. Ishihara, “Phospholipid polymer biointerfaces for lab-on-a-chip devices,” Ann. Biomed. Eng., vol. 38, no. 6, pp. 1938–1953, 2010, doi: 10.1007/s10439-010-0025-3.
[47] K. W. E. Sy Piecco, A. M. Aboelenen, J. R. Pyle, J. R. Vicente, D. Gautam, and J. Chen, “Kinetic Model under Light-Limited Condition for Photoinitiated Thiol-Ene Coupling Reactions,” ACS Omega, vol. 3, no. 10, pp. 14327–14332, 2018, doi: 10.1021/acsomega.8b01725.
[48] A. K. O’Brien, N. B. Cramer, and C. N. Bowman, “Oxygen inhibition in thiol-acrylate photopolymerizations,” J. Polym. Sci. Part A Polym. Chem., vol. 44, no. 6, pp. 2007–2014, 2006, doi: 10.1002/pola.21304.
[49] M. Uygun, M. A. Tasdelen, and Y. Yagci, “Influence of type of initiation on thiol-ene ‘click’ Chemistry,” Macromol. Chem. Phys., vol. 211, no. 1, pp. 103–110, 2010, doi: 10.1002/macp.200900442.
[50] T. O. Machado, C. Sayer, and P. H. H. Araujo, “Thiol-ene polymerisation: A promising technique to obtain novel biomaterials,” Eur. Polym. J., vol. 86, pp. 200–215, 2017, doi: 10.1016/j.eurpolymj.2016.02.025.
[51] F. Rusmini, Z. Zhong, and J. Feijen, “Protein Immobilization Strategies for Protein Biochips,” pp. 1775–1789, 2007.
[52] H. Ju, N. Hyun, B. Hyun, and G. Hun, “Micropatterning of biomolecules on glass surfaces modi W ed with various functional groups using photoactivatable biotin,” vol. 347, pp. 60–66, 2005, doi: 10.1016/j.ab.2005.08.015.
[53] S. K. Vashist, “Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications,” pp. 23–33, 2012, doi: 10.3390/diagnostics2030023.
[54] H. Vaisocherová, E. Brynda, and J. Homola, “Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications,” Anal. Bioanal. Chem., vol. 407, no. 14, pp. 3927–3953, 2015, doi: 10.1007/s00216-015-8606-5.
[55] M. Zangoli et al., “Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination †,” pp. 9202–9209, 2017, doi: 10.1039/c7nr01793f.
[56] S. Aitekenov, A. Gaipov, and R. Bukasov, “Review: Detection and quantification of proteins in human urine,” Talanta, vol. 223, p. 121718, 2021, doi: 10.1016/j.talanta.2020.121718.
[57] C. Giovannoli, L. Anfossi, C. Baggiani, and G. Giraudi, “A novel approach for a non competitive capillary electrophoresis immunoassay with laser-induced fluorescence detection for the determination of human serum albumin,” J. Chromatogr. A, vol. 1155, no. 2, pp. 187–192, 2007, doi: 10.1016/j.chroma.2007.02.056.
[58] B. X. Huang, H. Y. Kim, and C. Dass, “Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry,” J. Am. Soc. Mass Spectrom., vol. 15, no. 8, pp. 1237–1247, 2004, doi: 10.1016/j.jasms.2004.05.004.
[59] H. T. M. Phan, S. Bartelt-Hunt, K. B. Rodenhausen, M. Schubert, and J. C. Bartz, “Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE),” PLoS One, vol. 10, no. 10, 2015, doi: 10.1371/journal.pone.0141282.
[60] H. Chen et al., “Enhancement of BSA binding on Au surfaces by calix[4]bisazacrown monolayer,” Sensors, vol. 7, no. 10, pp. 2263–2272, 2007, doi: 10.3390/s7102263.
[61] S. Aydin, “A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA,” Peptides, vol. 72, pp. 4–15, 2015, doi: 10.1016/j.peptides.2015.04.012.
[62] C. J. Huang and Y. Y. Zheng, “Controlled Silanization Using Functional Silatrane for Thin and Homogeneous Antifouling Coatings,” Langmuir, vol. 35, no. 5, pp. 1662–1671, 2019, doi: 10.1021/acs.langmuir.8b01981.
[63] S. Subramanian, R. C. Huiszoon, S. Chu, W. E. Bentley, and R. Ghodssi, “Microsystems for biofilm characterization and sensing – A review,” Biofilm, vol. 2, no. November 2019, 2020, doi: 10.1016/j.bioflm.2019.100015.
[64] M. Fischer, G. J. Triggs, and T. F. Krauss, “Optical sensing of microbial life on surfaces,” Appl. Environ. Microbiol., vol. 82, no. 5, pp. 1362–1371, 2016, doi: 10.1128/AEM.03001-15.
[65] B. W. Chieng, N. A. Ibrahim, W. M. Z. W. Yunus, and M. Z. Hussein, “Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets,” Polymers (Basel)., vol. 6, no. 1, pp. 93–104, 2014, doi: 10.3390/polym6010093.
[66] S. Lim et al., “Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes,” J. Power Sources, vol. 360, pp. 585–592, 2017, doi: 10.1016/j.jpowsour.2017.06.049.
[67] A. S. Münch, M. Wölk, M. Malanin, K. J. Eichhorn, F. Simon, and P. Uhlmann, “Smart functional polymer coatings for paper with anti-fouling properties,” J. Mater. Chem. B, vol. 6, no. 5, pp. 830–843, 2018, doi: 10.1039/c7tb02886e.
[68] P. Veerakumar, T. Jeyapragasam, S. Surabhi, K. Salamalai, T. Maiyalagan, and K. C. Lin, “Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution,” J. Chem. Eng. Data, vol. 64, no. 4, pp. 1305–1321, 2019, doi: 10.1021/acs.jced.8b00878.
[69] Y. Coffinier, G. Piret, M. R. Das, and R. Boukherroub, “Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates,” Comptes Rendus Chim., vol. 16, no. 1, pp. 65–72, 2013, doi: 10.1016/j.crci.2012.08.011.
[70] M. James et al., “Nanoscale condensation of water on self-assembled monolayers,” Soft Matter, vol. 7, no. 11, pp. 5309–5318, 2011, doi: 10.1039/c1sm05096f.
[71] K. Wadu-Mesthrige, N. A. Amro, and G. Y. Liu, “Immobilization of proteins on self-assembled monolayers,” Scanning, vol. 22, no. 6, pp. 380–388, 2000, doi: 10.1002/sca.4950220607.
[72] Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc., vol. 62, no. 2, 2008, doi: 10.1366/000370208783575456.
[73] C. Y. Chiang, M. L. Hsieh, K. W. Huang, L. K. Chau, C. M. Chang, and S. R. Lyu, “Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids,” Biosens. Bioelectron., vol. 26, no. 3, pp. 1036–1042, 2010, doi: 10.1016/j.bios.2010.08.047.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明