博碩士論文 108827603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.223.172.252
姓名 甘鄔洋(Uuganbayar Gankhuyag)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症
(Lactobacillus rhamnosus as a probiotic bacterium against SARS-CoV-2 membrane glycoprotein-induced inflammation)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 表面醣蛋白為新型冠狀病毒最豐富之蛋白,但該蛋白對於引發新冠肺炎角色還未完全
明確,對比於綠螢光蛋白,在實驗小鼠鼻腔中點該表面醣蛋白可以在肺部沖洗液中引
發介白素六(IL-6) 、一種被當作免疫風暴指標之蛋白的表現,但在磷酸二酯酶(PDE4B)
基因缺陷小鼠中卻無法引發 IL-6 之表現,可見 PDE4B 在 IL-6 訊號傳遞中扮演著重要的
角色,鼠李糖乳桿菌 EH8 亞種 (L. rhamnosus) 之菌絲體發酵產物-丁酸,可以降低PDE4B
之表現量以及 IL-6 在巨噬細胞中的分泌,餵食實驗小鼠菌絲體可以增加共生菌
L. rhamnosus 的數量,小鼠在供給 L. rhamnosus 和菌絲體兩個禮拜後可以降低表面醣
蛋白引發之 PDE4B 表現和 IL-6 分泌,在實驗小鼠餵食游離脂肪酸受體 2(Ffar2) 之抑制
劑 GLPG-0974 後,益生菌效果都會被停止,Ffar2 在腸道-肺部連結可以負調節PDE4B-IL-6
之訊號傳遞將可以做為發展益生菌治療新冠肺炎引發免疫風暴中的一個目標。我與 Pham
Minh Tan 一起進行了我的碩士研究工作,他是博士。 我們實驗室的學生。 這項研究
工作提交給營養生物化學雜誌正在審查中。 作為本文的合著者,我的主要貢獻包括在
人物圖例中的描述。
摘要(英) The most abundant protein of SARS-CoV-2 is membrane glycoprotein, but the role of
this protein in COVID-19 is unclear. The intranasal administration of membrane
glycoprotein significantly increased IL-6 in BALF in mice compared to green
fluorescent protein (GFP)-inoculated mice. Asignificant decrease was observed in IL-6
levels effected by membrane glycoprotein in PDE4B knockout mice, showing that
PDE4B is essential to the process of IL-6 signaling. In macrophages, butyric acid is
produced by L.rhamnosus EH8 strain fermentation, which inhibits the PDE4B and
affects the release of IL-6. Mice fed mycelia had higher relative abundances of
commensal L. rhamnosus. Feeding L. rhamnosus with mycelia for two weeks
significantly reduced PDE4Band IL-6 in mice. In mice treated with GLPG-0974, the
probiotic effect of L. rhamnosus with mycelia was decreased. In COVID-19, Ffar2
may activate the gut-lung axis for down-regulating the PDE4B-IL-6 signaling.
Treatment of cytokine storms with probiotics may be applicable to this target. I
conducted my master researcher work withPham Minh Tan who is a PhD student in
our lab. This research work submitted to the Journal of Nutritional Biochemistry under
review. As a co-author for this paper, my major contributions including described in
figure legends.
關鍵字(中) ★ 免疫風暴
★ 鼠李糖乳桿菌
★ 介白素 6
★ 磷酸二酯酶 4B
★ 新型冠狀病毒
★ 表面 醣蛋白
關鍵字(英) ★ Cytokine storm
★ Lactobacillus rhamnosus
★ SARS-CoV-2
★ Il-6
★ PDE4B
★ membrane glycoprotein
論文目次 Table of Contents
Acknowledgements ................................................................................................................... 1 Abstract...................................................................................................................................... 2 List of Figures ............................................................................................................................ 5 List of Tables.............................................................................................................................. 5 Abbreviation List ....................................................................................................................... 6 Chapter 1 Introduction ............................................................................................................... 1
1.1 SARS-CoV-2 ................................................................................................................... 1 1.2 Cytokine storm (IL-6) by SARS-Cov-2........................................................................... 2 1.3 PDE4 ................................................................................................................................ 3 1.4 Role of gut bacteria in Covid-19...................................................................................... 4 1.5 Lactobacillus rhamnosus.................................................................................................. 5 1.6 Literature review .............................................................................................................. 6
1.6.1 SARS-CoV-2 to cytokine storm .................................................................................. 6
1.6.2 Probiotic bacteria are reducing IL-6 cytokine .......................................................... 7
Chapter 2 Research objectives ................................................................................................... 8 Chapter 3 Materials and Methods ............................................................................................ 10 3.1 Materials ........................................................................................................................ 10 3.1.1 Experimental equipment, reagents and primers ......................................................... 10 3.2 Methods.......................................................................................................................... 12 3.2.1 Ethics statement .......................................................................................................... 12 3.2.2 Bacterial identification. (16s gene sequencing) ...................................................... 12 3.2.3 Fungi identification. (ITS gene sequencing) ............................................................ 13 3.2.4 Purification and expression of SARS-CoV-2 membrane glycoproteins. .................... 13 3.2.5 The Detection of IL-6 in BALF ................................................................................ 14
III
3.2.6 Quantitative reverse transcription polymerase chain reaction ............................... 14
3.2.7 Mycelium preparation.............................................................................................. 15
3.2.8 Fermentation of mycelium of L. rhamnosus EH8 ....................................................... 15
3.2.9 Detection of L. rhamnosus .......................................................................................... 15
3.2.10 Cell culture........................................................................................................... 16
3.2.11 A high performance liquid chromatography (HPLC) method for detecting butyric
acid ...........................................................................................................16
3.2.12 Inhibition of Ffar2................................................................................................ 17
3.2.13 Statistical analysis ............................................................................................... 17
Chapter 4 Results ..................................................................................................................... 18
4.1 The membrane glycoprotein of SARS-CoV-2 induces IL-6 via PDE4B ...................... 18
4.2 SARS-CoV-2 membrane glycoprotein-induced IL-6 is diminished by mycelium fermentation of L. rhamnosus EH8 ............................................................................... 20
4.3 As a result of mycelium fermentation of L.rhamnosus EH8, butyric acid was produced and macrophage IL-6 secretion and PDE4B expression were reduced......................... 22
4.4 L. rhamnosus EH8 mycelium fermentation reduces PDE4B and IL-6 by regulating Ffar2............................................................................................................................... 24
4.5 SARS-CoV-2 membrane glycoprotein increased PDE4B and IL-6 production in macrophage cells............................................................................................................ 25
Chapter 5 Discussion ............................................................................................................... 26
Chapter 6 Conclusions ............................................................................................................. 27
Future work.............................................................................................................................. 28
References ............................................................................................................................... 29
參考文獻 References
Akour, A. (2020). Probiotics and COVID‐19: is there any link? Letters in Applied
Microbiology, 71, 229-234.
Ayyanna, R., Ankaiah, D., & Arul, V. (2018). Anti-inflammatory and antioxidant
properties of probiotic bacterium Lactobacillus mucosae AN1 and
Lactobacillus fermentum SNR1 in Wistar albino rats. Frontiers in Microbiology,
9, 3063.
Baud, D., Agri, V. D., Gibson, G. R., Reid, G., & Giannoni, E. (2020). Using probiotics
to flatten the curve of coronavirus disease COVID-2019 pandemic. Frontiers in
Public Health, 8, 186.
Chai, W., Burwinkel, M., Wang, Z., Palissa, C., Esch, B., Twardziok, S., . . . Schmidt,
M. F. (2013). Antiviral effects of a probiotic Enterococcus faecium strain
against transmissible gastroenteritis coronavirus. Archives of Virology, 158(4),
799-807.
Chen, P., Torralba, M., Tan, J., Embree, M., Zengler, K., Stärkel, P., . . . Ho, S. B.
(2015). Supplementation of saturated long-chain fatty acids maintains
intestinal eubiosis and reduces ethanol-induced liver injury in mice.
Gastroenterology, 148(1), 203-214. e216.
Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & MelguizoRodriguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID19 disease. Cytokine Growth Factor Rev, 54, 62-75.
doi:10.1016/j.cytogfr.2020.06.001
Dalamaga, M., Karampela, I., & Mantzoros, C. S. (2020). Commentary:
Phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the
cytokine storm in COVID-19. Metabolism, 154282.
Dang, A. T., & Marsland, B. J. (2019). Microbes, metabolites, and the gut–lung axis.
Mucosal Immunology, 12(4), 843-850.
Dickson, R. P. (2016). The microbiome and critical illness. The Lancet Respiratory
Medicine, 4(1), 59-72.
Dumas, A., Bernard, L., Poquet, Y., Lugo‐Villarino, G., & Neyrolles, O. (2018). The
role of the lung microbiota and the gut-lung axis in respiratory infectious
diseases. Cellular Microbiology, 20(12), e12966.
30
Hadi, J., Dunowska, M., Wu, S., & Brightwell, G. (2020). Control Measures for SARSCoV-2: A Review on Light-Based Inactivation of Single-Stranded RNA Viruses.
Pathogens, 9(9). doi:10.3390/pathogens9090737
Hirano, T., & Murakami, M. (2020). COVID-19: A new virus, but a familiar receptor
and cytokine release syndrome. Immunity, 52, 731-733.
Ibadallah, B. X., Abdullah, N., & Shuib, A. S. (2015). Identification of angiotensinconverting enzyme inhibitory proteins from mycelium of. Planta Med, 81, 123-
129.
Jia, W., Xie, G., & Jia, W. (2018). Bile acid–microbiota crosstalk in gastrointestinal
inflammation and carcinogenesis. Nature Reviews Gastroenterology &
Hepatology, 15(2), 111.
Jin, S.-L. C., Latour, A. M., & Conti, M. (2005). Generation of PDE4 knockout mice by
gene targeting. In C. Lugnier (Ed.), Phosphodiesterase methods and protocols
(pp. 191-210): Humana Press.
Kawamatawong, T. (2017). Roles of roflumilast, a selective phosphodiesterase 4
inhibitor, in airway diseases. Journal of Thoracic Disease, 9(4), 1144.
Kim, S. O., Sheikh, H. I., Ha, S. D., Martins, A., & Reid, G. (2006). G‐CSF‐mediated
inhibition of JNK is a key mechanism for Lactobacillus rhamnosus‐induced
suppression of TNF production in macrophages. Cellular Microbiology, 8(12),
1958-1971.
Kosutova, P., Mikolka, P., Kolomaznik, M., Balentova, S., Calkovska, A., & Mokra, D.
(2018). Effect of phosphodiesterase-4 inhibitor on the inflammation, oxidative
damage and apoptosis in a saline lavage-induced model of acute lung injury.
Eur Respiratory J, 52, PA5252.
Lavi, I., Levinson, D., Peri, I., Tekoah, Y., Hadar, Y., & Schwartz, B. (2010). Chemical
characterization, antiproliferative and antiadhesive properties of
polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting
bodies. Applied Microbiology and Biotechnology, 85(6), 1977-1990.
Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y., & Schwartz, B. (2012). Glucans
from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated
colon carcinogenesis in mice. Journal of Gastroenterology, 47(5), 504-518.
31
Liu, B., Li, M., Zhou, Z., Guan, X., & Xiang, Y. (2020). Can we use interleukin-6 (IL-6)
blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release
syndrome (CRS)? Journal of Autoimmunity, 102452.
Liu, Q., Tian, X., Maruyama, D., Arjomandi, M., & Prakash, A. (2020). Lung immune
tone regulation by the gut-lung immune axis: Short-chain fatty acid receptors
FFAR2 and FFAR3, and IL-1β expression profiling in mouse and human lung.
bioRxiv.
Liu, T., Zhang, J., Yang, Y., Zhang, L., Ma, H., Li, Z., . . . Wu, G. (2020). The
potential role of IL-6 in monitoring coronavirus disease 2019. Available at
SSRN 3548761.
Liu, Y., Wang, C., Li, J., Li, T., Zhang, Y., Liang, Y., & Mei, Y. (2020). Phellinus
linteus polysaccharide extract improves insulin resistance by regulating gut
microbiota composition. The FASEB Journal, 34(1), 1065-1078.
Lowy, R. J., & Dimitrov, D. S. (1997). Characterization of influenza virus-induced
death of J774. 1 macrophages. Experimental Cell Research, 234(2), 249-258.
Luoto, R., Ruuskanen, O., Waris, M., Kalliomäki, M., Salminen, S., & Isolauri, E.
(2014). Prebiotic and probiotic supplementation prevents rhinovirus infections
in preterm infants: a randomized, placebo-controlled trial. Journal of Allergy
and Clinical Immunology, 133(2), 405-413.
Martzy, R., Bica-Schröder, K., Pálvölgyi, Á. M., Kolm, C., Jakwerth, S., Kirschner, A.
K., . . . Farnleitner, A. H. (2019). Simple lysis of bacterial cells for DNA-based
diagnostics using hydrophilic ionic liquids. Scientific reports, 9(1), 1-10.
Mostafa, T. (2020). Could oral PDE-5 inhibitors have a potential adjuvant role in
combating COVID-19 infection? Sexual Medicine Reviews.
Namour, F., Galien, R., Van Kaem, T., Van der Aa, A., Vanhoutte, F., Beetens, J., &
Van′t Klooster, G. (2016). Safety, pharmacokinetics and pharmacodynamics of
GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects.
British Journal of Clinical Pharmacology, 82(1), 139-148.
Oh, N. S., Joung, J. Y., Lee, J. Y., & Kim, Y. (2018). Probiotic and anti-inflammatory
potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13
isolated from infant feces. PloS one, 13(2), e0192021.
Perez-Aso, M., Montesinos, M. C., Mediero, A., Wilder, T., Schafer, P. H., &
Cronstein, B. (2015). Apremilast, a novel phosphodiesterase 4 (PDE4)
32
inhibitor, regulates inflammation through multiple cAMP downstream effectors.
Arthritis Research & Therapy, 17(1), 1-13.
Rajput, S., Paliwal, D., Naithani, M., Kothari, A., Meena, K., & Rana, S. (2021).
COVID-19 and Gut Microbiota: A Potential Connection. Indian J Clin Biochem,
1-12. doi:10.1007/s12291-020-00948-9
Rooks, M. G., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity.
Nature reviews immunology, 16(6), 341-352.
Satokari, R., Grönroos, T., Laitinen, K., Salminen, S., & Isolauri, E. (2009).
Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in
Applied Microbiology, 48(1), 8-12.
Schmitter, T., Fiebich, B. L., Fischer, J. T., Gajfulin, M., Larsson, N., Rose, T., &
Goetz, M. R. (2018). Ex vivo anti-inflammatory effects of probiotics for
periodontal health. Journal of Oral Microbiology, 10(1), 1502027.
Shin, M. D., Shukla, S., Chung, Y. H., Beiss, V., Chan, S. K., Ortega-Rivera, O.
A., . . . Pokorski, J. K. (2020). COVID-19 vaccine development and a potential
nanomaterial path forward. Nature nanotechnology, 15(8), 646-655.
Sivaprakasam, S., Gurav, A., Paschall, A., Coe, G., Chaudhary, K., Cai, Y., . . .
Huang, L. (2016). An essential role of Ffar2 (Gpr43) in dietary fibre-mediated
promotion of healthy composition of gut microbiota and suppression of
intestinal carcinogenesis. Oncogenesis, 5(6), e238-e238.
Smiderle, F., Olsen, L., Ruthes, A., Czelusniak, P., Santana-Filho, A., Sassaki, G., . . .
Iacomini, M. (2012). Exopolysaccharides, proteins and lipids in Pleurotus
pulmonarius submerged culture using different carbon sources. Carbohydrate
Polymers, 87(1), 368-376.
Song, P., Li, W., Xie, J., Hou, Y., & You, C. (2020). Cytokine storm induced by
SARS-CoV-2. Clinica Chimica Acta, 509, 280-287.
doi:https://doi.org/10.1016/j.cca.2020.06.017
Traisaeng, S., Batsukh, A., Chuang, T.-H., Herr, D. R., Huang, Y.-F., Chimeddorj, B.,
& Huang, C.-M. (2020). Leuconostoc mesenteroides fermentation produces
butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1
diabetic mice. Scientific reports, 10(1), 1-10.
33
Trian, T., Burgess, J. K., Niimi, K., Moir, L. M., Ge, Q., Berger, P., . . . Oliver, B. G.
(2011). β 2-Agonist induced cAMP is decreased in asthmatic airway smooth
muscle due to increased PDE4D. PloS one, 6(5), e20000.
Ujike, M., & Taguchi, F. (2015). Incorporation of spike and membrane glycoproteins
into coronavirus virions. Viruses, 7(4), 1700-1725.
Vagena, E., Ryu, J. K., Baeza-Raja, B., Walsh, N. M., Syme, C., Day, J. P., . . .
Baillie, G. S. (2019). A high-fat diet promotes depression-like behavior in mice
by suppressing hypothalamic PKA signaling. Translational psychiatry, 9(1), 1-
15.
Van Ly, D., De Pedro, M., James, P., Morgan, L., Black, J. L., Burgess, J. K., &
Oliver, B. G. (2013). Inhibition of phosphodiesterase 4 modulates cytokine
induction from toll like receptor activated, but not rhinovirus infected, primary
human airway smooth muscle. Respiratory Research, 14(1), 127.
Wang, G., Jiang, L., Wang, J., Zhang, J., Kong, F., Li, Q., . . . Liang, L. (2020). The G
protein-coupled receptor FFAR2 promotes internalization during influenza A
virus entry. Journal of Virology, 94(2).
Yang, J.-X., Hsieh, K.-C., Chen, Y.-L., Lee, C.-K., Conti, M., Chuang, T.-H., . . . Jin,
S.-L. C. (2017). Phosphodiesterase 4B negatively regulates endotoxinactivated interleukin-1 receptor antagonist responses in macrophages.
Scientific reports, 7(1), 1-13.
Zhang, X., Wu, K., Wang, D., Yue, X., Song, D., Zhu, Y., & Wu, J. (2007).
Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through
cellular transcription factor NF-κB. Virology, 365(2), 324-335.
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2021-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明