博碩士論文 108827606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.117.186.92
姓名 Asy Syifa Labibah(Asy Syifa Labibah)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria
(Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 德氏乳桿菌(L. delbreuckii)是一種益生菌,可與嗜熱鏈球菌一起存在於優酪乳中。之前的研究發現,攝入用 (L. delbreuckii) 發酵的優酪乳可以提高有助於老年人生物防禦的免疫系統參數值。大腸桿菌(E.coli)是人類腸道微生物組中的一種機會性細菌。這種細菌會引起腸胃炎和腸道感染。與年輕人相比,在老年人中發現了不同的腸道微生物群組成,其中某些病原體增加。這可能與老年人免疫能力下降有關。在這項研究中,我們通過檢測腸道細菌的抗體來分析不同年齡段的差異腸道微生物組。側向流動免疫分析 (LFIA) 是一種快速且低成本的方法,用於檢測人血清和唾液中的腸道細菌抗體。 L. delbreuckii 或 E.coli 的抗體可以通過 LFIA 在人血清和唾液中檢測到,該 LFIA 用細菌裂解物點在硝酸纖維素膜上。此外,老年人的大腸桿菌或德氏乳桿菌的抗體高於年輕人。在老年人中,大腸桿菌的抗體比德氏乳桿菌的抗體高得多。另一方面,德氏乳桿菌產生的電力明顯高於大腸桿菌。分析不同年齡段腸道中生電細菌的抗體可能會開啟一項關於衰老的新研究。
摘要(英) Abstract

Lactobacillus delbrueckii (L. delbreuckii) is one of probiotic bacteria that can be in the yogurt with Streptococcus thermophilus bacteria. The previous study has found that the intake of yogurt fermented with (L. delbreuckii) can improve the values of immune system parameters that contributed to biological defense in the elderly. Eschericia coli (E. coli) is an opportunistic bacterium in the human gut microbiome. This bacterium can cause gastroenteritis and intestinal infection. In older people, a different gut microbiota composition with the increased certain pathogens was found, as compared to younger people. This may be related to a decrease in immunocompetence in elder people. In this study, we profile the differential gut microbiome in various ages via detection of antibodies to gut bacteria. The lateral flow immunoassay (LFIA), a rapid and low cost method, was constructed to detect the antibodies to gut bacteria in the human sera and saliva. The antibodies to L. delbreuckii or E. coli can be detected in the human sera and saliva by LFIA spotted with bacterial lysates on nitrocellulose membrane. Furthermore, the antibodies to E. coli or L. delbreuckii were higher on older people than young people. In older people, the antibodies to E. coli were much higher than antibodies to L.delbrueckii. On the other hand, electricity produced by L. delbrueckii was significantly higher than that by E. coli. Profiling the antibodies to electrogenic bacteria in the gut of various ages may open a new study of aging.

Keyword : L. delbrueckii,E. coli, LFIA, Aging factor
關鍵字(中) ★ 大腸桿菌
★ 老化因數
關鍵字(英) ★ L. delbrueckii
★ E. coli
★ LFIA
★ Aging factor
論文目次 Table of Contents

Abstract …………………………………………………………………………….. vii
Acknowledgments ………………………………………………………………….. viii
Table of Contents …………………………………………………………………… ix
List of Figures ………………………………………………………………………. x
List of Table ………………………………………………………………………… xi
Abbreviation List ……………………………………………………………………. xii
Chapter 1 Introduction ……………………………………………………………… 1
Chapter 2 Literature review …………………………………………………………. 3
2.1 Gut Bacteria …………………………………………………………... 3
2.1.1 Lactobacillus delbrueckii ………………………………………... 4
2.1.2 Escherichia coli ………………………………………………… 5
2.2 Elderly Gut ……………………………………………………………. 6
2.3 LFIA ………………………………………………………………….. 8
2.4 Electrogenic Bacteria …………………………………………………. 12
2.5 MFC …………………………………………………………………… 14
Chapter 3 Materials and Methods …………………………………………………… 16
3.1 Ethics Statement ……………………………………………………….. 16
3.2 Identification bacteria ………………………………………………… 16
3.3 Bacterial Culture and Bacterial Lysate ……………………………….. 16
3.4 LFIA Fabrication ……………………………………………………… 17
3.5 Extraction DNA fecal and RT-qPCR …………………………………. 17
3.6 Immunization and Titer Antibody …………………………………….. 18
3.7 Electricity detection in vitro …………………………………………… 19
3.8 Statistics analysis …………………………………………………… ... 19
Chapter 4 Result …………………………………………………………………… . 20
4.1 Screening L. delbrueckii ssp. Bulgaricus bacteria from human fecal sample ………………………………………………………………… 20
4.2 Determine antibodies against L.delbrueckii and E.coli in humans
and mice ……………………………………………………………… 24
4.3 Determine antibodies against L. delbrueckii and E. coli in different age human and mice …………………………………………………….. . 25
4.4. Immunization Result and Antibody Titer ………………………….. . 27
4.5. Electricity production of gut bacteria ……………………………….. 29
Chapter 5 Discussion and Conclusion ………………………………………............ 31
Reference ……………………………………………………………………………. 35
參考文獻 Reference
Coman, V, & Vodnar, D. C. (2020). Gut microbiota and old age : Modulating factors and interventions for healthy longevity. Experimental Gerontology, 111095.
Geoba, 2020. The world: life expectancy (2019). Available at http://www.geoba.se. Accesed on May 05, 2020
Makino, S., Ikegami, S., Kume, A., Horiuchi, H., Sasaki, H., & Orii, N. (2010). Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. British Journal of Nutrition, 104(7), 998-1006.
Makino, S., Ikegami, S., Kume, A., Horiuchi, H., Sasaki, H., & Orii, N. (2010). Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. British Journal of Nutrition, 104(7), 998-1006.
Morash, M., Mitchell, H., Beltran, H., Elemento, O., Pathak, J., The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. J Pers Med 2018, 8.
Malla, M. A., Dubey, A., Kumar, A., Yadav, S., et al., Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front Immunol 2018, 9, 2868.
Awany, D., Allali, I., Dalvie, S., Hemmings, S., et al., Host and Microbiome Genome-Wide Association Studies: Current State and Challenges. Front Genet 2018, 9, 637.
Baker, S. C., Genetic Engineering & Biotechnology News 2017.
Smith, W. J., Wang, G., Gaikwad, H., Vu, V. P., et al., Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS Nano 2018.
Nagai, T., Makino, S., Ikegami, S., Itoh, H., & Yamada, H. (2011). Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. International immunopharmacology, 11(12), 2246-2250.
Palmela, C., Chevarin, C., Xu, Z., Torres, J., Sevrin, G., Hirten, R., ... & Colombel, J. F. (2018). Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut, 67(3), 574-587.
Kumar, R., Singh, L., Wahid, Z. A., & Din, M. F. M. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: a review. International Journal of Energy Research, 39(8),1048-1067.
Kumar, R., Singh, L., & Zularisam, A. (2016). Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322-1336.
Kumar, R., Singh, L., Zularisam, A., & Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 42(2), 369-394
Fornero, J. J., Rosenbaum, M., & Angenent, L. T. (2010). Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(7‐8), 832-843.
Hai, F. I., Yamamoto, K., & Fukushi, K. (2007). Hybrid treatment systems for dye wastewater. Critical Reviews in Environmental Science and Technology, 37(4), 315-377.
Jiang, Y., Xu, Y., Yang, Q., Chen, Y., Zhu, S., & Shen, S. (2014). Power generation using polyaniline/multi‐walled carbon nanotubes as an alternative cathode catalyst in microbial fuel cells. International journal of energy research, 38(11), 1416-1423.
Nevin, K. P., Richter, H., Covalla, S., Johnson, J., Woodard, T., Orloff, A., Jia, H., Zhang, M., & Lovley, D. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental microbiology, 10(10), 2505-2514.
Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101(6), 1533-1543.
Ci, S., Wen, Z., Chen, J., & He, Z. (2012). Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochemistry Communications, 14(1), 71-74
Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26(6), 3000-3004
Wu, Y., Zhang, X., Li, S., Lv, X., Cheng, Y., & Wang, X. (2013). Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode. Electrochimica Acta, 109, 328-332.
Yong, X.-Y., Feng, J., Chen, Y.-L., Shi, D.-Y., Xu, Y.-S., Zhou, J., Wang, S.-Y., Xu, L., Yong, Y.-C.,& Sun, Y.-M. (2014). Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosensors and Bioelectronics, 56, 19-25.
Yoshizawa, T., Miyahara, M., Kouzuma, A., & Watanabe, K. (2014). Conversion of activated-sludgereactors to microbial fuel cells for wastewater treatment coupled to electricity generation.Journal of bioscience and bioengineering, 118(5), 533-539.
Yu, Y.-Y., Guo, C. X., Yong, Y.-C., Li, C. M., & Song, H. (2015). Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere, 140, 26-33.
Koczula, K. M., & Gallotta, A. (2016). Lateral flow assays. Essays in biochemistry, 60(1), 111-120.
Moon, J., Kim, G., & Lee, S. (2013). Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin A in buffer systems. Journal of nanoscience and nanotechnology, 13(11), 7245-7249.
Peterson, C. T., Sharma, V., Elmén, L., & Peterson, S. N. (2015). Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology, 179(3), 363-377.
Shi, N., Li, N., Duan, X., & Niu, H. (2017). Interaction between the gut microbiome and mucosal immune system. Military Medical Research, 4(1), 1-7.
Ayabe, T., Ashida, T., Kohgo, Y., & Kono, T. (2004). The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends in microbiology, 12(8), 394-398.
Vaishnava, S., Yamamoto, M., Severson, K. M., Ruhn, K. A., Yu, X., Koren, O., ... & Hooper, L. V. (2011). The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science, 334(6053), 255-258.
Medici, M., Vinderola, C. G., Weill, R., & Perdigón, G. (2005). Effect of fermented milk containing probiotic bacteria in the prevention of an enteroinvasive Escherichia coli infection in mice. Journal of dairy research, 72(2), 243-249.
Moro-García, M. A., Alonso-Arias, R., Baltadjieva, M., Benítez, C. F., Barrial, M. A. F., Ruisánchez, E. D., ... & López-Larrea, C. (2013). Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age, 35(4), 1311-1326.
Hugo, A. A., De Antoni, G. L., & Perez, P. F. (2006). Lactobacillus delbrueckii subsp lactis strain CIDCA 133 inhibits nitrate reductase activity of Escherichia coli. International journal of food microbiology, 111(3), 191-196.
Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical microbiology reviews, 26(4), 822-880.
Denamur, E., Clermont, O., Bonacorsi, S., & Gordon, D. (2021). The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiology, 19(1), 37-54.
Winter, S. E., Winter, M. G., Xavier, M. N., Thiennimitr, P., Poon, V., Keestra, A. M., ... & Bäumler, A. J. (2013). Host-derived nitrate boosts growth of E. coli in the inflamed gut. science, 339(6120), 708-711.
Hughes, E. R., Winter, M. G., Duerkop, B. A., Spiga, L., de Carvalho, T. F., Zhu, W., ... & Winter, S. E. (2017). Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell host & microbe, 21(2), 208-219.
Shin, N. R., Whon, T. W., & Bae, J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in biotechnology, 33(9), 496-503.
Forsythe, P., Sudo, N., Dinan, T., Taylor, V. H., & Bienenstock, J. (2010). Mood and gut feelings. Brain, behavior, and immunity, 24(1), 9-16.
Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., ... & De Vos, W. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PloS one, 5(5), e10667.
Claesson, M. J., Cusack, S., O′Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., ... & O′Toole, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4586-4591.
Mossad, O., & Blank, T. (2021). Getting on in old age: how the gut microbiota interferes with brain innate immunity. Frontiers in Cellular Neuroscience, 250.
Peterson, C. T., Sharma, V., Elmén, L., & Peterson, S. N. (2015). Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology, 179(3), 363-377.
Maynard, C., & Weinkove, D. (2018). The gut microbiota and ageing. Biochemistry and Cell Biology of Ageing: Part I Biomedical Science, 351-371.
Anfossi, L., Di Nardo, F., Cavalera, S., Giovannoli, C., & Baggiani, C. (2019). Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors, 9(1), 2.
Tahernia, M., Mohammadifar, M., Gao, Y., Panmanee, W., Hassett, D. J., & Choi, S. (2020). A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells. Biosensors and Bioelectronics, 162, 112259.
Pankratova, G., Hederstedt, L., & Gorton, L. (2019). Extracellular electron transfer features of Gram-positive bacteria. Analytica chimica acta, 1076, 32-47.
Marito, S., Keshari, S., Traisaeng, S., Balasubramaniam, A., Adi, P., Hsieh, M. F., ... & Huang, C. M. (2021). Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Scientific reports, 11(1), 1-11.
指導教授 黃俊銘(Eric) 審核日期 2021-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明