博碩士論文 108827607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.74.54
姓名 林妙玲(Lam Dieu Linh)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds)
相關論文
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傷口感染已成為全球性的經濟負擔。目前,傷口照護方法以使用抗生素為主,然而過度使用抗生素容易導致細菌產生抗藥性,且新抗生素研發的速度趕不上抗藥性產生的速度。因此,本研究使用聚琥珀酰亞胺(Polysuccinimide, PSI)開發出具酸鹼應答性且生物可降解性之奈米粒子,並以酸鹼調控抗生素釋放。本研究使用酸鹼應答性之11-氨基十一酸(11-aminoundecanoic acid, AUA)官能化部分的PSI,形成隨機兩性共聚物 (random amphiphilic copolymers, PA)。PA以奈米沉澱法於水溶液中形成奈米粒子,並裝載疏水性的抗生素-立放黴素(Rifampicin, Rif)於疏水性的核心中。AUA上的羧基之酸解離常数(pKa)為4.55。因此,於微酸性無感染傷口中,AUA上的羧基為非離子型,此時PA的碳氫鏈緊密地排列將藥物包埋於奈米粒子中。然而由於細菌增生,導致傷口表面的酸鹼值高於7時,AUA被去質子化導致奈米粒子拆解,同時PSI上的疏水結構也被水解,導致抗生素釋放。最終,殘餘水溶性且具生物可降解性的聚(天冬氨酸)(poly(aspartic acid))衍生共聚物於傷口中。
本研究合成三種PA奈米粒子,PA5、PA10、PA25,對應5%、10%、25%莫爾濃度的AUA官能化於PSI,並藉由混濁度與滴定法進行PA奈米粒子的酸鹼響應性鑑定,結果顯示抗生素於酸鹼值5有最低釋放量,而抗生素於酸鹼值7.5增加釋放量。為了證實PA對環境的友善性,PA的可降解性以化學需氧量(Chemical oxygen demand, COD)與凝膠層析滲透儀(Gel Permeation Chromatography, GPC)進行評估。除此之外,本研究將PA與傷口敷料結合,結果顯示結合PA的傷口敷料具有優秀的酸鹼調控抗生素釋放特性,且具有顯著的殺菌效果。因此,本研究開發以酸鹼值調控抗生素釋放之奈米粒子可減緩抗生素濫用的情況,並對治療傷口感染做出貢獻。
關鍵字: 奈米粒子、生物可降解性、酸鹼觸發釋放、抗生素、傷口敷料
摘要(英) Wound infection has become a health economic burden in the world. Current wound treatment approaches are mostly achieved by using antibiotics. However, the widespread and excessive using antibiotics even without evidence of infection easily causes antibiotic resistance. The new antibiotic productions decline while the elevated antibiotic resistance. Here, we introduce the pH-responsive and biodegradable nanoparticles (NPs) for the pH-triggered release of antibiotics using polysuccinimide (PSI), a forerunner of biodegradable poly(aspartic acid) was functionalized with a pH-responsive amine, 11-aminoundecanoic acid (AUA), to produce random amphiphilic copolymers (PA). The nanoparticle of PA copolymer was formed by the nanoprecipitation method in an aqueous solution and was loaded with hydrophobic antibiotic Rifampicin (Rif) in hydrophobic cores. pKa (COOH) of 4.55 has been determined for 11-aminoundecanoic acid. Therefore, at a slightly acidic pH value of non-infected wounds, the carboxylic groups exist in non-ionic form, the hydrocarbon chains were packed tighter, then the nanoparticles remain and keep the drugs inside. When wound pH value elevates above pH 7 due to proliferation of bacteria, AUA segments were deprotonated leading to disassemble and release drug component, also the hydrolysis of the PSI’s hydrophobic succinimide parts. Finally, the residue was the water-soluble and biodegradable poly(aspartic acid) (PASP) derivative copolymer.
In this study, we synthesized PA5, PA10, and PA25 corresponding to 5%, 10%, and 25% AUA functionalized molarity to PSI. The pH-responsive properties were reviewed by turbidity and titration methods. The drug release from the release test displayed that a minimal at acidic pH = 5.0 but amplified at alkaline pH = 7.5. To demonstrate the environmentally friendly property, their degradation assays were conducted using the Chemical oxygen demand and GPC measurements. Moreover, the coordination with wound dressing materials has been carried out. The results revealed the outstanding selected pH-responsive release of drugs after combination with wound dressing with excellent antibacterial properties. Therefore, this material has become a potential candidate for antibiotic stimulus-responsive release in infected wound treatments, contributing mitigation of exessive using antibiotics.
Keywords: Nanoparticles, biodegradable, pH-triggered release, antibiotics, wound dressing combination.
關鍵字(中) ★ 奈米粒子
★ 生物可降解性
★ 酸鹼觸發釋放
★ 抗生素
★ 傷口敷料
關鍵字(英) ★ Nanoparticles
★ biodegradable
★ pH-triggered release
★ antibiotics
★ wound dressing combination
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT I
ABSTRACT II
TABLE OF CONTENTS IV
LIST OF FIGURES VIII
LIST OF TABLES XII
LIST OF ABBREVIATIONS XIII
CHAPTER I: INTRODUCTION 1
1.1. Overview. 1
1.2. Wounds. 4
1.2.1. Skin structure. 4
1.2.2. Wounds and wound infections. 5
1.3. Driving forces for nanoparticle formation. 8
1.3.1. Electrostatic interactions. 9
1.3.2. Hydrophobic effect. 9
1.3.3. Hydrogen bonding. 9
1.3.4. Van der Waals forces. 10
1.3.5. Coordination interactions. 10
1.3.6. π−π interactions. 10
1.4. Nanoparticle preparation strategies. 11
1.4.1. Self-assembly. 11
1.4.1.1. Nanoprecipitation. 11
1.4.1.2. Coordination. 13
1.4.1.3. Thin-Film Hydration. 14
1.4.2. Microemulsion. 15
1.4.3. Particle Replication in Nonwetting Templates (PRINT). 16
1.4.4. Electrospraying. 17
1.4.5. Microfluidics. 18
1.5. Nanomaterials employed for wound therapy. 19
1.5.1. Nanoparticles in wound therapy. 19
1.5.1.1. Non-polymeric nanoparticles. 19
1.5.1.2. Polymeric nanomaterials. 20
1.5.1.2.1. Natural polymers 21
1.5.1.2.2. Synthetic polymers. 21
1.5.2. Stimulus factors for the intelligent response of nanoparticles in wound therapy. 22
1.5.2.1. Bacterial toxins and enzymes. 22
1.5.2.2. pH changes. 23
1.5.2.3. Light. 23
1.5.3. Nanoparticle-based scaffolds: combination strategies. 24
1.5.3.1. Nanoparticle-based nanofibrous structures. 24
1.5.3.2. Nanoparticle-based hydrogels. 24
1.5.3.3. Nanoparticle-based films or membranes. 25
1.5.3.4. Nanoparticle-based multi-components. 25
1.6. Polysuccinimide and functional polyaspartamide based materials. 26
1.6.1. Overview. 26
1.6.2. Polysuccinimide (PSI) synthesis. 28
1.6.3. Functionalization of Polysuccinimide. 28
1.6.3.1. Thiols modification. 30
1.6.3.2. Long alkyl chain combinations. 30
1.6.3.3. Combination with imaging agents. 31
CHAPTER II: RESEARCH OBJECTIVES 32
CHAPTER III. MATERIALS AND METHODS 34
3.1. Materials. 34
3.1.1. Chemicals. 34
3.1.2. Instruments. 35
3.2. Synthesis. 35
3.2.1. Polysuccinimide (PSI) synthesis procedure. 35
3.2.2. Synthesis of AUA-functionalized polysuccinimide copolymers (PAs). 36
3.3. Experimental method. 37
3.3.1. Characterizations. 37
3.3.1.1. Hydrogen-1 Nuclear Magnetic Resonance Spectrometer (1H-NMR). 37
3.3.1.2. Attenuated Total Reflectance-Fourier Transform Infrared spectrum (ATR-FTIR) measurement. 37
3.3.1.3. Gel permeation chromatography (GPC) measurement. 37
3.3.2. Preparation of PA Nanoparticles (PA-NPs) and Rifampicin-Loaded PA Nanoparticles (Rif-PA-NPs). 37
3.3.3. Dynamic light scattering (DLS) and zeta-potential measurement. 39
3.3.4. Turbidity study. 39
3.3.5. Titration study. 39
3.3.6. pH-responsive casting test. 40
3.3.7. In vitro release study. 40
3.3.8. Antimicrobial activity test. 40
3.3.8.1. Bacterial minimum inhibitory concentration (MIC) determination and minimum bactericidal concentration (MBC). 40
3.3.8.2. Antibacterial plate counting assay. 41
3.3.8.3. Antibacterial release test. 42
3.3.9. Biodegradability test. 42
3.3.9.1. Degradation evaluation by Gel permeation chromatography (GPC). 42
3.3.9.2. Chemical demand oxygen (COD) measurement. 43
3.3.10. Cytotoxicity test. 44
3.3.11. Modification of gauze bandages with PA copolymers containing rifampicin (Rif-PA-Ban). 44
3.3.11.1. The combination PAs containing drugs on the gauze bandages. 44
3.3.11.2. In vitro release study of drug-loaded gauze bandages. 45
3.3.11.3. Antibacterial assay. 46
CHAPTER IV: RESULTS AND DISCUSSION 47
4.1. Polysuccinimide (PSI) synthesis and characterization. 47
4.2. Synthesis and characterization of AUA-functionalized polysuccinimide copolymers (PA). 48
4.3. Characteristics of the PA nanoparticles (PA-NPs). 53
4.3.1. Dynamic light scattering (DLS) and zeta-potential measurement. 53
4.3.2. Turbidity study. 56
4.3.3. Titration study. 58
4.3.4. pH-responsive casting test. 59
4.3.5. Rifampicin-Loaded PA Nanoparticles (Rif-PA-NPs). 61
4.4. In vitro release study. 62
4.5. Antimicrobial activity test. 64
4.5.1. Bacterial minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determination. 64
4.5.2. Antibacterial plate counting assay. 65
4.5.3. Antibacterial release test. 68
4.6. Biodegradability test. 69
4.6.1. Degradation evaluation by Gel permeation chromatography (GPC). 69
4.6.2. Chemical demand oxygen (COD) measurement. 71
4.7. Cytotoxicity test. 73
4.8. Modification of gauze bandages with PA copolymers containing rifampicin. 74
4.8.1. The combination PAs containing drugs on the gauze bandages (Rif-PA-Ban). 74
4.8.1.1. Scanning Electron Microscopy (SEM) analysis. 74
4.8.1.2. Drug loading capacity of the gauze bandages. 75
4.8.2. In vitro release study of drug-loaded gauze bandages. 76
4.8.3. Antibacterial assay. 78
CHAPTER V: CONCLUSION 80
CHAPTER VI: FUTURE PERSPECTIVES 81
REFERENCES: 82
參考文獻 [1] J. F. Guest et al., “Health economic burden that wounds impose on the National Health Service in the UK,” Natl. Heal. Serv. UK. BMJ Open, vol. 5, p. 9283, 2015, doi: 10.1136/bmjopen-2015-009283.
[2] Anna Walduck et al., “Treatment of Staphylococcus aureus skin infection in vivo using rifampicin loaded lipid nanoparticles,” RSC Adv., vol. 10, no. 55, pp. 33608–33619, Sep. 2020, doi: 10.1039/D0RA06120D.
[3] T. F. Schäberle and I. M. Hack, “Overcoming the current deadlock in antibiotic research,” Trends Microbiol., vol. 22, no. 4, pp. 165–167, Apr. 2014, doi: 10.1016/J.TIM.2013.12.007.
[4] N. T. Thet et al., “SPaCE Swab: Point-of-Care Sensor for Simple and Rapid Detection of Acute Wound Infection,” ACS Sensors, vol. 5, no. 8, pp. 2652–2657, Aug. 2020, doi: 10.1021/ACSSENSORS.0C01265/SUPPL_FILE/SE0C01265_LIVESLIDES.MP4.
[5] C. Xu, O. U. Akakuru, X. Ma, J. Zheng, J. Zheng, and A. Wu, “Nanoparticle-Based Wound Dressing: Recent Progress in the Detection and Therapy of Bacterial Infections,” Bioconjug. Chem., vol. 31, no. 7, pp. 1708–1723, Jul. 2020, doi: 10.1021/ACS.BIOCONJCHEM.0C00297.
[6] G. Xu et al., “Battery-Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled On-Demand Drug Delivery,” Adv. Funct. Mater., vol. 31, no. 26, p. 2100852, Jun. 2021, doi: 10.1002/ADFM.202100852.
[7] N. T. Thet et al., “Prototype Development of the Intelligent Hydrogel Wound Dressing and Its Efficacy in the Detection of Model Pathogenic Wound Biofilms,” ACS Appl. Mater. Interfaces, vol. 8, no. 24, pp. 14909–14919, Jun. 2016, doi: 10.1021/ACSAMI.5B07372/SUPPL_FILE/AM5B07372_SI_001.PDF.
[8] T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, and N. H. Voelcker, “Sensors and imaging for wound healing: A review,” Biosens. Bioelectron., vol. 41, no. 1, pp. 30–42, Mar. 2013, doi: 10.1016/J.BIOS.2012.09.029.
[9] D. Armstrong, K. Holtz-Neiderer, … C. W.-T. A. journal of, and undefined 2007, “Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients,” Elsevier, Accessed: Nov. 23, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0002934307007395.
[10] C. Gamerith et al., “pH-responsive materials for optical monitoring of wound status,” Sensors Actuators B Chem., vol. 301, p. 126966, Dec. 2019, doi: 10.1016/J.SNB.2019.126966.
[11] K. Srinivasan and R. Mahadevan, “Characterization of proton production and consumption associated with microbial metabolism,” BMC Biotechnol., vol. 10, no. 1, pp. 1–10, Jan. 2010, doi: 10.1186/1472-6750-10-2/FIGURES/5.
[12] D. Sharp, P. Gladstone, R. B. Smith, S. Forsythe, and J. Davis, “Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection,” Bioelectrochemistry, vol. 77, no. 2, pp. 114–119, Feb. 2010, doi: 10.1016/J.BIOELECHEM.2009.07.008.
[13] T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, and N. H. Voelcker, “Sensors and imaging for wound healing: A review,” Biosensors and Bioelectronics, vol. 41, no. 1. Elsevier, pp. 30–42, Mar. 15, 2013, doi: 10.1016/j.bios.2012.09.029.
[14] L. A. Schneider, A. Korber, S. Grabbe, and J. Dissemond, “Influence of pH on wound-healing: a new perspective for wound-therapy?,” Arch. Dermatological Res. 2006 2989, vol. 298, no. 9, pp. 413–420, Nov. 2006, doi: 10.1007/S00403-006-0713-X.
[15] H. Haidari, Z. Kopecki, A. T. Sutton, S. Garg, A. J. Cowin, and K. Vasilev, “pH-Responsive ‘Smart’ Hydrogel for Controlled Delivery of Silver Nanoparticles to Infected Wounds,” Antibiot. 2021, Vol. 10, Page 49, vol. 10, no. 1, p. 49, Jan. 2021, doi: 10.3390/ANTIBIOTICS10010049.
[16] E. Jalalvandi and A. Shavandi, “Polysuccinimide and its derivatives: Degradable and water soluble polymers (review),” Eur. Polym. J., vol. 109, pp. 43–54, Dec. 2018, doi: 10.1016/J.EURPOLYMJ.2018.08.056.
[17] P. Das and N. R. Jana, “Biomedical Applications of Functional Polyaspartamide-Based Materials,” Cite This ACS Appl. Polym. Mater, vol. 2021, pp. 4791–4811, 2021, doi: 10.1021/acsapm.1c00785.
[18] “SIDS Initial Assessment Report For SIAM 15,” 2002.
[19] S.-I. Yusa, D. Oka, Y. Iwasaki, and K. Ishihara, “pH-Responsive Association Behavior of Biocompatible Random Copolymers Containing Pendent Phosphorylcholine and Fatty Acid,” doi: 10.1021/acs.langmuir.1c02200.
[20] *,† Shin-ichi Yusa, † Akihisa Sakakibara, † and Tohei Yamamoto, and Y. Morishima‡, “Reversible pH-Induced Formation and Disruption of Unimolecular Micelles of an Amphiphilic Polyelectrolyte,” Macromolecules, vol. 35, no. 13, pp. 5243–5249, Jun. 2002, doi: 10.1021/MA0200930.
[21] S. Ohno, K. Ishihara, and S.-I. Yusa, “Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water,” Langmuir, vol. 32, p. 23, 2016, doi: 10.1021/acs.langmuir.6b00637.
[22] S. I. Yusa, A. Sakakibara, T. Yamamoto, and Y. Morishima, “Reversible pH-Induced Formation and Disruption of Unimolecular Micelles of an Amphiphilic Polyelectrolyte,” Macromolecules, vol. 35, no. 13, pp. 5243–5249, Jun. 2002, doi: 10.1021/MA0200930.
[23] R. R. Nayak, S. Roy, and J. Dey, “Characterization of polymeric vesicles of poly(sodium 11-acrylamidoundecanoate) in water,” Colloid Polym. Sci. 2006 2852, vol. 285, no. 2, pp. 219–224, Sep. 2006, doi: 10.1007/S00396-006-1554-Z.
[24] “Histology of Skin - Epidermis and Dermis | Definition, Examples, Diagrams.” https://www.toppr.com/ask/en-af/content/concept/histology-of-skin-epidermis-and-dermis-259100/ (accessed Nov. 25, 2021).
[25] Z. Zaidi and S. W. Lanigan, “Skin: Structure and Function,” Dermatology Clin. Pract., pp. 1–15, 2010, doi: 10.1007/978-1-84882-862-9_1.
[26] J. Krug, Kinetic pattern formation at solid surfaces. 2005.
[27] M. C. Robson, D. L. Steed, and M. G. Franz, “Wound healing: Biologic features and approaches to maximize healing trajectories,” Curr. Probl. Surg., vol. 38, no. 2, p. A1, 2001, doi: 10.1067/MSG.2001.111167.
[28] S. Dhivya, V. V. Padma, and E. Santhini, “Wound dressings – a review,” BioMedicine, vol. 5, no. 4, pp. 24–28, Dec. 2015, doi: 10.7603/S40681-015-0022-9.
[29] S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, and P. Babilas, “Oxygen in acute and chronic wound healing,” Br. J. Dermatol., vol. 163, no. 2, pp. 257–268, Aug. 2010, doi: 10.1111/J.1365-2133.2010.09804.X.
[30] G. S. Lazarus, D. M. Cooper, D. R. Knighton, R. E. Percoraro, G. Rodeheaver, and M. C. Robson, “Definitions and guidelines for assessment of wounds and evaluation of healing.,” Wound Repair Regen., vol. 2, no. 3, pp. 165–70, Jul. 1994, doi: 10.1046/j.1524-475X.1994.20305.x.
[31] G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nat. 2008 4537193, vol. 453, no. 7193, pp. 314–321, May 2008, doi: 10.1038/nature07039.
[32] J. Zhou et al., “Bacteria-responsive intelligent wound dressing: Simultaneous In situ detection and inhibition of bacterial infection for accelerated wound healing,” Biomaterials, vol. 161, pp. 11–23, Apr. 2018, doi: 10.1016/J.BIOMATERIALS.2018.01.024.
[33] R. J. White, “Wound infection-associated pain.,” J. Wound Care, vol. 18, no. 6, pp. 245–249, 2009, doi: 10.12968/JOWC.2009.18.6.42803.
[34] R. C.-D. I. C. for W. Infection and undefined 2005, “Understanding wound infection,” ci.nii.ac.jp, Accessed: Dec. 01, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10018178815/.
[35] A. Kingsley, “The wound infection continuum and its application to clinical practice.,” Ostomy. Wound. Manage., vol. 49, no. 7A Suppl, pp. 1–7, Jul. 2003, Accessed: Dec. 01, 2021. [Online]. Available: https://europepmc.org/article/med/12883156.
[36] L. Jiang and S. C. J. Loo, “Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections,” ACS Appl. Bio Mater., vol. 4, no. 5, pp. 3849–3862, May 2020, doi: 10.1021/ACSABM.0C01168.
[37] “Identification and management of biofilm in chronic wounds,” 2018.
[38] F. Fang, M. Li, J. Zhang, and C. S. Lee, “Different Strategies for Organic Nanoparticle Preparation in Biomedicine,” ACS Mater. Lett., vol. 2, no. 5, pp. 531–549, May 2020, doi: 10.1021/ACSMATERIALSLETT.0C00078.
[39] J. J. Richardson, M. Björnmalm, and F. Caruso, “Technology-driven layer-by-layer assembly of nanofilms,” Science (80-. )., vol. 348, no. 6233, Apr. 2015, doi: 10.1126/SCIENCE.AAA2491/ASSET/C9D17684-D3F5-4DCD-A659-D6D2C1B85446/ASSETS/GRAPHIC/348_AAA2491_FA.JPEG.
[40] C. Tan et al., “A Robust Aqueous Core-Shell-Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of Hydrophilic Cargo,” ACS Nano, vol. 13, no. 8, pp. 9016–9027, Aug. 2019, doi: 10.1021/ACSNANO.9B03049/SUPPL_FILE/NN9B03049_SI_001.PDF.
[41] K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, “Nanoscale Forces and Their Uses in Self-Assembly,” Small, vol. 5, no. 14, pp. 1600–1630, Jul. 2009, doi: 10.1002/SMLL.200900358.
[42] J. Wang, K. Liu, R. Xing, and X. Yan, “Peptide self-assembly: thermodynamics and kinetics,” Chem. Soc. Rev., vol. 45, no. 20, pp. 5589–5604, Oct. 2016, doi: 10.1039/C6CS00176A.
[43] Y. Yang et al., “G-Quadruplex-Based Nanoscale Coordination Polymers to Modulate Tumor Hypoxia and Achieve Nuclear-Targeted Drug Delivery for Enhanced Photodynamic Therapy,” Nano Lett., vol. 18, no. 11, pp. 6867–6875, Nov. 2018, doi: 10.1021/ACS.NANOLETT.8B02732/SUPPL_FILE/NL8B02732_SI_001.PDF.
[44] Y. Chao et al., “Highly effective radioisotope cancer therapy with a non-therapeutic isotope delivered and sensitized by nanoscale coordination polymers,” ACS Nano, vol. 12, no. 8, pp. 7519–7528, Aug. 2018, doi: 10.1021/ACSNANO.8B02400/SUPPL_FILE/NN8B02400_SI_001.PDF.
[45] P.-C. Chen, J. J. Lai, and C.-J. Huang, “Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination,” ACS Appl. Mater. Interfaces, vol. 13, no. 22, pp. 25663–25673, Jun. 2021, doi: 10.1021/ACSAMI.1C03191.
[46] “Modern Physical Organic Chemistry - Eric V. Anslyn, ic V. Anslyn, Dennis A. Dougherty - Google Sách.” https://books.google.com.tw/books?id=gY-Sxijk_tMC&printsec=frontcover&redir_esc=y#v=onepage&q&f=false (accessed Dec. 04, 2021).
[47] B. Guo, E. Middha, and B. Liu, “Solvent Magic for Organic Particles,” ACS Nano, vol. 13, no. 3, pp. 2675–2680, Mar. 2019, doi: 10.1021/ACSNANO.9B01487.
[48] K. Miladi et al., “Nanoprecipitation Process: From Particle Preparation to In Vivo Applications,” Polym. Nanoparticles Nanomedicines, vol. 445, no. 2, pp. 17–53, 2016, doi: 10.1007/978-3-319-41421-8_2.
[49] C. J. Martínez Rivas et al., “Nanoprecipitation process: From encapsulation to drug delivery,” Int. J. Pharm., vol. 532, no. 1, pp. 66–81, Oct. 2017, doi: 10.1016/J.IJPHARM.2017.08.064.
[50] S. M. D’Addio and R. K. Prud’homme, “Controlling drug nanoparticle formation by rapid precipitation,” Adv. Drug Deliv. Rev., vol. 63, no. 6, pp. 417–426, May 2011, doi: 10.1016/J.ADDR.2011.04.005.
[51] B. Liu, F. Hu, J. Zhang, C. Wang, and L. Li, “A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug–Gene Combinations,” Angew. Chemie - Int. Ed., vol. 58, no. 26, pp. 8804–8808, Jun. 2019, doi: 10.1002/ANIE.201903417.
[52] M. Li et al., “Engineering Multifunctional DNA Hybrid Nanospheres through Coordination-Driven Self-Assembly,” Angew. Chemie, vol. 131, no. 5, pp. 1364–1368, Jan. 2019, doi: 10.1002/ANGE.201810735.
[53] “Protocol for Liposome Preparation Through Thin-film Hydration.” https://tmbj.hkbu.edu.hk/images/20130629/13724927885156.pdf (accessed Dec. 05, 2021).
[54] “Liposome Preparation - Avanti® Polar Lipids.” https://www.sigmaaldrich.com/TW/en/technical-documents/protocol/cell-culture-and-cell-culture-analysis/transfection-and-gene-editing/liposome-preparation (accessed Dec. 05, 2021).
[55] Z. He et al., “A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity,” Biomaterials, vol. 101, pp. 296–309, Sep. 2016, doi: 10.1016/J.BIOMATERIALS.2016.06.002.
[56] C. Fetsch, J. Gaitzsch, L. Messager, G. Battaglia, and R. Luxenhofer, “Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes,” Sci. Reports 2016 61, vol. 6, no. 1, pp. 1–13, Sep. 2016, doi: 10.1038/srep33491.
[57] A. C. Apolinário, M. S. Magoń, A. Pessoa, and C. de O. Rangel-Yagui, “Challenges for the Self-Assembly of Poly(Ethylene Glycol)–Poly(Lactic Acid) (PEG-PLA) into Polymersomes: Beyond the Theoretical Paradigms,” Nanomater. 2018, Vol. 8, Page 373, vol. 8, no. 6, p. 373, May 2018, doi: 10.3390/NANO8060373.
[58] L. Maja, K. Željko, and P. Mateja, “Sustainable technologies for liposome preparation,” J. Supercrit. Fluids, vol. 165, Nov. 2020, doi: 10.1016/J.SUPFLU.2020.104984.
[59] M. A. Malik, M. Y. Wani, and M. A. Hashim, “Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update,” Arab. J. Chem., vol. 5, no. 4, pp. 397–417, Oct. 2012, doi: 10.1016/J.ARABJC.2010.09.027.
[60] “Forschungszentrum Jülich - Amphiphiles.” https://www.fz-juelich.de/ibi/ibi-5/EN/Forschung/Amphiphiles/_node.html (accessed Dec. 05, 2021).
[61] K. Ita, “Microemulsions,” Transdermal Drug Deliv., pp. 97–122, 2020, doi: 10.1016/B978-0-12-822550-9.00006-5.
[62] J. Xu, D. H. C. Wong, J. D. Byrne, K. Chen, C. Bowerman, and J. M. Desimone, “Future of the Particle Replication in Nonwetting Templates (PRINT) Technology,” Angew. Chemie Int. Ed., vol. 52, no. 26, pp. 6580–6589, Jun. 2013, doi: 10.1002/ANIE.201209145.
[63] J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. Desimone, “PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics,” Acc. Chem. Res., vol. 44, no. 10, pp. 990–998, Oct. 2011, doi: 10.1021/AR2000315.
[64] E. M. Enlow, J. C. Luft, M. E. Napier, and J. M. Desimone, “Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings,” Nano Lett., vol. 11, no. 2, pp. 808–813, Feb. 2011, doi: 10.1021/NL104117P/SUPPL_FILE/NL104117P_SI_001.PDF.
[65] S. Zhang, C. Campagne, and F. Salaün, “Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone,” Appl. Sci. 2019, Vol. 9, Page 402, vol. 9, no. 3, p. 402, Jan. 2019, doi: 10.3390/APP9030402.
[66] H. Yu et al., “Paclitaxel-Loaded Core–Shell Magnetic Nanoparticles and Cold Atmospheric Plasma Inhibit Non-Small Cell Lung Cancer Growth,” ACS Appl. Mater. Interfaces, vol. 10, no. 50, pp. 43462–43471, Dec. 2018, doi: 10.1021/ACSAMI.8B16487.
[67] J. Wang, J. A. Jansen, and F. Yang, “Electrospraying: Possibilities and challenges of engineering carriers for biomedical applications - a mini review,” Front. Chem., vol. 7, no. APR, p. 258, 2019, doi: 10.3389/FCHEM.2019.00258/BIBTEX.
[68] A. Alehosseini, B. Ghorani, M. Sarabi-Jamab, and N. Tucker, “Principles of electrospraying: A new approach in protection of bioactive compounds in foods,” Crit. Rev. Food Sci. Nutr., vol. 58, no. 14, pp. 2346–2363, Sep. 2018, doi: 10.1080/10408398.2017.1323723.
[69] J. M. Cornejo Bravo, L. J. Villarreal Gómez, and A. Serrano Medina, “Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques,” Electrospinning - Mater. Tech. Biomed. Appl., Dec. 2016, doi: 10.5772/65939.
[70] S. J. Shepherd, D. Issadore, and M. J. Mitchell, “Microfluidic formulation of nanoparticles for biomedical applications,” Biomaterials, vol. 274, p. 120826, Jul. 2021, doi: 10.1016/J.BIOMATERIALS.2021.120826.
[71] E. Thomée, “Microfluidic Nanoparticle Synthesis: A short Review,” Elveflow, Feb. 2021, Accessed: Dec. 06, 2021. [Online]. Available: https://www.elveflow.com/microfluidic-reviews/general-microfluidics/microfluidic-nanoparticle-synthesis-short-review/.
[72] D. Zhang, H. Bi, B. Liu, and L. Qiao, “Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods,” Anal. Chem., vol. 90, no. 9, pp. 5512–5520, May 2018, doi: 10.1021/ACS.ANALCHEM.8B00399.
[73] J. Ahn, J. Ko, S. Lee, J. Yu, Y. T. Kim, and N. L. Jeon, “Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening,” Adv. Drug Deliv. Rev., vol. 128, pp. 29–53, Mar. 2018, doi: 10.1016/J.ADDR.2018.04.001.
[74] D. Liu, H. Zhang, F. Fontana, J. T. Hirvonen, and H. A. Santos, “Current developments and applications of microfluidic technology toward clinical translation of nanomedicines,” Adv. Drug Deliv. Rev., vol. 128, pp. 54–83, Mar. 2018, doi: 10.1016/J.ADDR.2017.08.003.
[75] A. G. Niculescu, C. Chircov, A. C. Bîrcă, and A. M. Grumezescu, “Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview,” Nanomater. 2021, Vol. 11, Page 864, vol. 11, no. 4, p. 864, Mar. 2021, doi: 10.3390/NANO11040864.
[76] P. Laverman et al., “Microscopic localization of PEG-liposomes in a rat model of focal infection,” J. Control. Release, vol. 75, no. 3, pp. 347–355, Aug. 2001, doi: 10.1016/S0168-3659(01)00402-3.
[77] J. Zhang et al., “Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria,” J. Am. Chem. Soc., vol. 136, no. 13, pp. 4873–4876, Apr. 2014, doi: 10.1021/JA5011338/SUPPL_FILE/JA5011338_SI_001.PDF.
[78] M. Berthet, Y. Gauthier, C. Lacroix, B. Verrier, and C. Monge, “Nanoparticle-Based Dressing: The Future of Wound Treatment?,” Trends Biotechnol., vol. 35, no. 8, pp. 770–784, Aug. 2017, doi: 10.1016/J.TIBTECH.2017.05.005.
[79] S. K. Nethi, S. Das, C. R. Patra, and S. Mukherjee, “Recent advances in inorganic nanomaterials for wound-healing applications,” Biomater. Sci., vol. 7, no. 7, pp. 2652–2674, Jun. 2019, doi: 10.1039/C9BM00423H.
[80] S. E. Rowe et al., “Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection,” Nat. Microbiol. 2019 52, vol. 5, no. 2, pp. 282–290, Dec. 2019, doi: 10.1038/s41564-019-0627-y.
[81] G. Mi, D. Shi, M. Wang, and T. J. Webster, “Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces,” Adv. Healthc. Mater., vol. 7, no. 13, p. 1800103, Jul. 2018, doi: 10.1002/ADHM.201800103.
[82] G. Yang et al., “Nanoparticle-Based Strategies and Approaches for the Treatment of Chronic Wounds,” J. Biomater. Tissue Eng., vol. 8, no. 4, pp. 455–464, Sep. 2018, doi: 10.1166/JBT.2018.1776.
[83] A. Panáček et al., “Bacterial resistance to silver nanoparticles and how to overcome it,” Nat. Nanotechnol. 2017 131, vol. 13, no. 1, pp. 65–71, Dec. 2017, doi: 10.1038/s41565-017-0013-y.
[84] Y. Liu et al., “Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control,” Chem. Soc. Rev., vol. 48, no. 2, pp. 428–446, Jan. 2019, doi: 10.1039/C7CS00807D.
[85] D. Hu et al., “Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant Staphylococcus aureus Biofilm,” ACS Nano, vol. 11, no. 9, pp. 9330–9339, Sep. 2017, doi: 10.1021/ACSNANO.7B04731/SUPPL_FILE/NN7B04731_SI_001.PDF.
[86] J. Huang et al., “Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria,” ACS Appl. Mater. Interfaces, vol. 9, no. 42, pp. 36606–36614, Oct. 2017, doi: 10.1021/ACSAMI.7B11062/SUPPL_FILE/AM7B11062_SI_001.PDF.
[87] Y. Qiao et al., “Near-Infrared Laser-Excited Nanoparticles to Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing,” ACS Appl. Mater. Interfaces, vol. 10, no. 1, pp. 193–206, Jan. 2018, doi: 10.1021/ACSAMI.7B15251/SUPPL_FILE/AM7B15251_SI_001.PDF.
[88] J. Wang et al., “Poly (vinyl alcohol) (PVA) hydrogel incorporated with Ag/TiO2 for rapid sterilization by photoinspired radical oxygen species and promotion of wound healing,” Appl. Surf. Sci., vol. 494, pp. 708–720, Nov. 2019, doi: 10.1016/J.APSUSC.2019.07.224.
[89] J. Zhou, A. L. Loftus, G. Mulley, and A. T. A. Jenkins, “A thin film detection/response system for pathogenic bacteria,” J. Am. Chem. Soc., vol. 132, no. 18, pp. 6566–6570, May 2010, doi: 10.1021/JA101554A/SUPPL_FILE/JA101554A_SI_001.PDF.
[90] G. G. Pereira et al., “Microparticles of Aloe vera/vitamin E/chitosan: Microscopic, a nuclear imaging and an in vivo test analysis for burn treatment,” Eur. J. Pharm. Biopharm., vol. 86, no. 2, pp. 292–300, Feb. 2014, doi: 10.1016/J.EJPB.2013.10.011.
[91] M. Zahiri et al., “Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution,” Int. J. Biol. Macromol., vol. 153, pp. 1241–1250, Jun. 2020, doi: 10.1016/J.IJBIOMAC.2019.10.255.
[92] H. Ye, J. Cheng, and K. Yu, “In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity,” Int. J. Biol. Macromol., vol. 121, pp. 633–642, Jan. 2019, doi: 10.1016/J.IJBIOMAC.2018.10.056.
[93] M. Naseri-Nosar and Z. M. Ziora, “Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites,” Carbohydr. Polym., vol. 189, pp. 379–398, Jun. 2018, doi: 10.1016/J.CARBPOL.2018.02.003.
[94] B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, “Polylactic acid (PLA) controlled delivery carriers for biomedical applications,” Adv. Drug Deliv. Rev., vol. 107, pp. 163–175, Dec. 2016, doi: 10.1016/J.ADDR.2016.06.018.
[95] S. Chen, F. Tang, L. Tang, and L. Li, “Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties,” ACS Appl. Mater. Interfaces, vol. 9, no. 24, pp. 20895–20903, Jun. 2017, doi: 10.1021/ACSAMI.7B04956/SUPPL_FILE/AM7B04956_SI_001.PDF.
[96] M. Foroutan Koudehi and R. Zibaseresht, “Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber,” https://doi.org/10.1080/10667857.2019.1649888, vol. 35, no. 1, pp. 21–30, Jan. 2019, doi: 10.1080/10667857.2019.1649888.
[97] N. Hasan et al., “Bacteria-Targeted Clindamycin Loaded Polymeric Nanoparticles: Effect of Surface Charge on Nanoparticle Adhesion to MRSA, Antibacterial Activity, and Wound Healing,” Pharm. 2019, Vol. 11, Page 236, vol. 11, no. 5, p. 236, May 2019, doi: 10.3390/PHARMACEUTICS11050236.
[98] S. Rani et al., “HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin,” Pharm. Res. 2018 361, vol. 36, no. 1, pp. 1–12, Dec. 2018, doi: 10.1007/S11095-018-2543-X.
[99] W. G. La and H. S. Yang, “Heparin-Conjugated Poly(Lactic-Co-Glycolic Acid) Nanospheres Enhance Large-Wound Healing by Delivering Growth Factors in Platelet-Rich Plasma,” Artif. Organs, vol. 39, no. 4, pp. 388–394, Apr. 2015, doi: 10.1111/AOR.12389.
[100] Z. Xie et al., “Dual growth factor releasing multi-functional nanofibers for wound healing,” Acta Biomater., vol. 9, no. 12, pp. 9351–9359, Dec. 2013, doi: 10.1016/J.ACTBIO.2013.07.030.
[101] K. K. Chereddy et al., “Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds,” Nanomedicine Nanotechnology, Biol. Med., vol. 11, no. 8, pp. 1975–1984, Nov. 2015, doi: 10.1016/J.NANO.2015.07.006.
[102] L. Jiang and S. C. J. Loo, “Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections,” ACS Appl. Bio Mater., vol. 4, no. 5, pp. 3849–3862, May 2020, doi: 10.1021/ACSABM.0C01168.
[103] S. Bhakdil and J. Tranum-Jensen2, “Alpha-toxin of Staphylococcus aureus,” Microbiol. Rev., vol. 55, no. 4, pp. 733–751, Dec. 1991, doi: 10.1128/MR.55.4.733-751.1991.
[104] Y. M. Zuo et al., “Enzyme-Responsive Ag Nanoparticle Assemblies in Targeting Antibacterial against Methicillin-Resistant Staphylococcus Aureus,” ACS Appl. Mater. Interfaces, vol. 12, no. 4, pp. 4333–4342, Jan. 2020, doi: 10.1021/ACSAMI.9B22001/SUPPL_FILE/AM9B22001_SI_001.PDF.
[105] H. Jiang, M. Ochoa, J. F. Waimin, R. Rahimi, and B. Ziaie, “A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds,” Lab Chip, vol. 19, no. 13, pp. 2265–2274, Jun. 2019, doi: 10.1039/C9LC00206E.
[106] N. Pan, J. Qin, P. Feng, Z. Li, and B. Song, “Color-changing smart fibrous materials for naked eye real-time monitoring of wound pH,” J. Mater. Chem. B, vol. 7, no. 16, pp. 2626–2633, Apr. 2019, doi: 10.1039/C9TB00195F.
[107] L. V. Zhukova, “Evidence for Compression of Escherichia coli K12 Cells under the Effect of TiO2 Nanoparticles,” ACS Appl. Mater. Interfaces, vol. 7, no. 49, pp. 27197–27205, Dec. 2015, doi: 10.1021/ACSAMI.5B08042/SUPPL_FILE/AM5B08042_SI_001.PDF.
[108] Y. Fan et al., “Nanogel Encapsulated Hydrogels As Advanced Wound Dressings for the Controlled Delivery of Antibiotics,” Adv. Funct. Mater., vol. 31, no. 7, p. 2006453, Feb. 2021, doi: 10.1002/ADFM.202006453.
[109] J. Yao, C. W. M. Bastiaansen, and T. Peijs, “High Strength and High Modulus Electrospun Nanofibers,” Fibers 2014, Vol. 2, Pages 158-186, vol. 2, no. 2, pp. 158–186, Apr. 2014, doi: 10.3390/FIB2020158.
[110] S. Yang, X. Li, P. Liu, M. Zhang, C. Wang, and B. Zhang, “Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications,” ACS Biomater. Sci. Eng., vol. 6, no. 8, pp. 4666–4676, Aug. 2020, doi: 10.1021/ACSBIOMATERIALS.0C00674/SUPPL_FILE/AB0C00674_SI_001.PDF.
[111] F. Reyes-Ortega et al., “Bioactive bilayered dressing for compromised epidermal tissue regeneration with sequential activity of complementary agents,” Acta Biomater., vol. 23, pp. 103–115, Sep. 2015, doi: 10.1016/J.ACTBIO.2015.05.012.
[112] D. Aycan, B. Selmi, E. Kelel, T. Yildirim, and N. Alemdar, “Conductive polymeric film loaded with ibuprofen as a wound dressing material,” Eur. Polym. J., vol. 121, p. 109308, Dec. 2019, doi: 10.1016/J.EURPOLYMJ.2019.109308.
[113] A. M. Díez-Pascual and A. L. Díez-Vicente, “Wound Healing Bionanocomposites Based on Castor Oil Polymeric Films Reinforced with Chitosan-Modified ZnO Nanoparticles,” Biomacromolecules, vol. 16, no. 9, pp. 2631–2644, Sep. 2015, doi: 10.1021/ACS.BIOMAC.5B00447.
[114] G. D. Mogoşanu and A. M. Grumezescu, “Natural and synthetic polymers for wounds and burns dressing,” Int. J. Pharm., vol. 463, no. 2, pp. 127–136, Mar. 2014, doi: 10.1016/J.IJPHARM.2013.12.015.
[115] A. M. Ferreira, C. Mattu, E. Ranzato, and G. Ciardelli, “Bioinspired porous membranes containing polymer nanoparticles for wound healing,” J. Biomed. Mater. Res. - Part A, vol. 102, no. 12, pp. 4394–4405, Dec. 2014, doi: 10.1002/JBM.A.35121.
[116] A. Mogrovejo-Valdivia et al., “In Vitro Microbiological and Drug Release of Silver/Ibuprofen Loaded Wound Dressing Designed for the Treatment of Chronically Infected Painful Wounds,” Antibiot. 2021, Vol. 10, Page 805, vol. 10, no. 7, p. 805, Jul. 2021, doi: 10.3390/ANTIBIOTICS10070805.
[117] T. Nakato, M. Yoshitake, K. Matsubara, M. Tomida, and T. Kakuchi, “Relationships between Structure and Properties of Poly(aspartic acid)s,” 1998, Accessed: Oct. 03, 2021. [Online]. Available: https://pubs.acs.org/sharingguidelines.
[118] S. Su and P. M. Kang, “Systemic Review of Biodegradable Nanomaterials in Nanomedicine,” Nanomater. 2020, Vol. 10, Page 656, vol. 10, no. 4, p. 656, Apr. 2020, doi: 10.3390/NANO10040656.
[119] X. Wang, H. Ren, Y. Yan, and M. Ji, “A Novel Bio-based Polyaspartic Acid Copolymer: Synthesis, Structure and Performance of Degradation,” J. Polym. Environ. 2018 2611, vol. 26, no. 11, pp. 4201–4210, Aug. 2018, doi: 10.1007/S10924-018-1293-5.
[120] T. Hiraishi, “Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications,” Appl. Microbiol. Biotechnol. 2015 1004, vol. 100, no. 4, pp. 1623–1630, Dec. 2015, doi: 10.1007/S00253-015-7216-7.
[121] P. S. Yavvari, A. K. Awasthi, A. Sharma, A. Bajaj, and A. Srivastava, “Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes,” J. Mater. Chem. B, vol. 7, no. 13, pp. 2102–2122, Mar. 2019, doi: 10.1039/C8TB02962H.
[122] H. Adelnia, H. D. N. Tran, P. J. Little, I. Blakey, and H. T. Ta, “Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications,” ACS Biomater. Sci. Eng., vol. 7, no. 6, pp. 2083–2105, Jun. 2021, doi: 10.1021/ACSBIOMATERIALS.1C00150.
[123] P. Das and N. R. Jana, “Dopamine functionalized polymeric nanoparticle for targeted drug delivery,” RSC Adv., vol. 5, no. 42, pp. 33586–33594, Apr. 2015, doi: 10.1039/C5RA03302K.
[124] X. Dong et al., “Multi-armed poly(aspartate-g-OEI) copolymers as versatile carriers of pDNA/siRNA,” Acta Biomater., vol. 9, no. 6, pp. 6943–6952, Jun. 2013, doi: 10.1016/J.ACTBIO.2013.02.007.
[125] B. S. Kim et al., “Self-Assembly of siRNA/PEG- b-Catiomer at Integer Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes) for RNAi and Codelivery of Cargo Macromolecules,” J. Am. Chem. Soc., vol. 141, no. 8, pp. 3699–3709, Feb. 2019, doi: 10.1021/JACS.8B13641/SUPPL_FILE/JA8B13641_SI_001.PDF.
[126] H. M. Yang, C. W. Park, S. Park, and J. D. Kim, “Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging,” Colloids Surfaces B Biointerfaces, vol. 161, pp. 183–191, Jan. 2018, doi: 10.1016/J.COLSURFB.2017.10.049.
[127] S. Zakharchenko, E. Sperling, and L. Ionov, “Fully biodegradable self-rolled polymer tubes: A candidate for tissue engineering scaffolds,” Biomacromolecules, vol. 12, no. 6, pp. 2211–2215, Jun. 2011, doi: 10.1021/BM2002945/SUPPL_FILE/BM2002945_SI_001.AVI.
[128] J. Velazco-de-la-Garza et al., “Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting,” Eur. Polym. J., vol. 131, p. 109705, May 2020, doi: 10.1016/J.EURPOLYMJ.2020.109705.
[129] M. Tomida, T. Nakato, S. Matsunami, and T. Kakuchi, “Convenient synthesis of high molecular weight poly(succinimide) by acid-catalysed polycondensation of l-aspartic acid,” Polymer (Guildf)., vol. 38, no. 18, pp. 4733–4736, Sep. 1997, doi: 10.1016/S0032-3861(96)01079-8.
[130] K. Matsubara, T. Nakato, and M. Tomida, “1H and 13C NMR Characterization of Poly(succinimide) Prepared by Thermal Polycondensation of l-Aspartic Acid1,” Macromolecules, vol. 30, no. 8, pp. 2305–2312, Apr. 1997, doi: 10.1021/MA961579H.
[131] G. Horvát et al., “Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system,” Eur. J. Pharm. Sci., vol. 67, pp. 1–11, Jan. 2015, doi: 10.1016/J.EJPS.2014.10.013.
[132] M. Budai-Szücs et al., “In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects,” http://dx.doi.org/10.3109/03639045.2015.1118497, vol. 42, no. 8, pp. 1241–1246, Dec. 2015, doi: 10.3109/03639045.2015.1118497.
[133] M. Budai-Szucs et al., “Mucoadhesive Cyclodextrin-Modified Thiolated Poly(aspartic acid) as a Potential Ophthalmic Drug Delivery System,” Polym. 2018, Vol. 10, Page 199, vol. 10, no. 2, p. 199, Feb. 2018, doi: 10.3390/POLYM10020199.
[134] S. Duggan, W. Cummins, O. O’ Donovan, H. Hughes, and E. Owens, “Thiolated polymers as mucoadhesive drug delivery systems,” Eur. J. Pharm. Sci., vol. 100, pp. 64–78, Mar. 2017, doi: 10.1016/J.EJPS.2017.01.008.
[135] K. Debnath, K. Mandal, and N. R. Jana, “Phase Transfer and Surface Functionalization of Hydrophobic Nanoparticle using Amphiphilic Poly(amino acid),” Langmuir, vol. 32, no. 11, pp. 2798–2807, Mar. 2016, doi: 10.1021/ACS.LANGMUIR.6B00282/SUPPL_FILE/LA6B00282_SI_001.PDF.
[136] D.-E. Liu et al., “Synthesis of amphiphilic polyaspartamide derivatives and construction of reverse micelles,” RSC Adv., vol. 4, no. 70, pp. 37130–37137, Aug. 2014, doi: 10.1039/C4RA04432K.
[137] S. Schubert, J. T. Delaney, and U. S. Schubert, “Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid),” doi: 10.1039/c0sm00862a.
[138] C. J. Martínez Rivas et al., “Nanoprecipitation process: From encapsulation to drug delivery,” Int. J. Pharm., vol. 532, no. 1, pp. 66–81, Oct. 2017, doi: 10.1016/J.IJPHARM.2017.08.064.
[139] S. Kim, Y. L. Traore, J. S. Lee, J.-H. Kim, E. A. Ho, and S. Liu, “Self-assembled nanoparticles made from a new PEGylated poly(aspartic acid) graft copolymer for intravaginal delivery of poorly water-soluble drugs,” http://dx.doi.org/10.1080/09205063.2017.1374032, vol. 28, no. 17, pp. 2082–2099, Nov. 2017, doi: 10.1080/09205063.2017.1374032.
[140] S. Kim, Y. L. Traore, Y. Chen, E. A. Ho, and S. Liu, “Switchable on-demand release of a nanocarrier from a segmented reservoir type intravaginal ring filled with a ph-responsive supramolecular polyurethane hydrogel,” ACS Appl. Bio Mater., vol. 1, no. 3, pp. 652–662, Sep. 2018, doi: 10.1021/acsabm.8b00146.
[141] A. Seshsayana, B. S. Rao, Y. P. Raju, C. P. S. Narayan, and K. V. R. Murthy, “Studies On Release Of Rifampicin From Modified Pulsincap Technique,” Indian J. Pharm. Sci., vol. 63, no. 4, p. 337, Accessed: Oct. 01, 2021. [Online]. Available: https://www.ijpsonline.com/articles/.
[142] Z. Wang, X. Liu, Y. Duan, and Y. Huang, “Nanoparticle-Hydrogel Systems Containing Platensimycin for Local Treatment of Methicillin-Resistant Staphylococcus aureus Infection,” Mol. Pharm., vol. 18, p. 4110, 2021, doi: 10.1021/ACS.MOLPHARMACEUT.1C00523/SUPPL_FILE/MP1C00523_SI_001.PDF.
[143] C. A. Marangon et al., “Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy,” ACS Appl. Mater. Interfaces, vol. 12, no. 5, pp. 5488–5499, Feb. 2020, doi: 10.1021/ACSAMI.9B19253.
[144] Melisa Monerris, M. F. Broglia, E. I. Yslas, C. A. Barbero, and C. R. Rivarola, “Highly effective antimicrobial nanocomposites based on hydrogel matrix and silver nanoparticles: long-lasting bactericidal and bacteriostatic effects,” Soft Matter, vol. 15, no. 40, pp. 8059–8066, Oct. 2019, doi: 10.1039/C9SM01118H.
[145] J. Hua et al., “Small antimicrobial agents encapsulated in poly(epsilon-caprolactone)-poly(ethylene glycol) nanoparticles for treatment of S. aureus-infected wounds,” J. Nanoparticle Res. 2018 2010, vol. 20, no. 10, pp. 1–14, Oct. 2018, doi: 10.1007/S11051-018-4369-1.
[146] G. Domingue, J. W. Costerton, and M. R. W. Brown, “Bacterial doubling time modulates the effects of opsonisation and available iron upon interactions between Staphylococcus aureus and human neutrophils,” FEMS Immunol. Med. Microbiol., vol. 16, no. 3–4, pp. 223–228, Dec. 1996, doi: 10.1111/J.1574-695X.1996.TB00139.X.
[147] E. W. Rice, R. B. Baird, and A. D. Eaton, “Standard Methods for the Examination of Water and Wastewater, 23rd Edition.”
[148] “OECD GUIDELINE FOR TESTING OF CHEMICALS.”
[149] Shuchen Shi, Yufeng Wu, Yueyan Wang, Jing Yu, and Ying Xu, “Synthesis and characterization of a biodegradable polyaspartic acid/2-amino-2-methyl-1-propanol graft copolymer and evaluation of its scale and corrosion inhibition performance,” RSC Adv., vol. 7, no. 58, pp. 36714–36721, Jul. 2017, doi: 10.1039/C7RA06848D.
[150] G. H. Gao, Y. Li, and D. S. Lee, “Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy,” J. Control. Release, vol. 169, no. 3, pp. 180–184, Aug. 2013, doi: 10.1016/J.JCONREL.2012.11.012.
[151] R. Liu et al., “Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles,” J. Control. Release, vol. 152, no. 1, pp. 49–56, May 2011, doi: 10.1016/J.JCONREL.2011.02.031.
[152] M. Mizusaki, Y. Shimada, Y. Morishima, and S. I. Yusa, “pH-Responsive Intra- and Inter-Molecularly Micelle Formation of Anionic Diblock Copolymer in Water,” Polym. 2016, Vol. 8, Page 56, vol. 8, no. 2, p. 56, Feb. 2016, doi: 10.3390/POLYM8020056.
[153] H. Jiang, M. Ochoa, J. F. Waimin, R. Rahimi, and B. Ziaie, “A pH-regulated drug delivery dermal patch for targeting infected regions in chronic wounds,” Lab Chip, vol. 19, no. 13, 2019, doi: 10.1039/c9lc00206e.
[154] “Surface Treatment Agents, Surface Treatment Powders and Cosmetics | Patent Information | J-GLOBAL Science and Technology Link Center.” https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200903057244458189 (accessed Dec. 16, 2021).
[155] “ABA type triblock copolymer, thickener and aqueous composition | Patent information | J-GLOBAL Science and Technology Link Center.” https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201703013396385131&rel=1#%7B%22category%22%3A%220%22%2C%22keyword%22%3A%222013-241567%22%7D (accessed Dec. 16, 2021).
[156] M. R. Hill et al., “Biodegradable and pH-Responsive Nanoparticles Designed for Site-Specific Delivery in Agriculture,” Biomacromolecules, vol. 16, no. 4, pp. 1276–1282, Apr. 2015, doi: 10.1021/ACS.BIOMAC.5B00069.
[157] Pradip Das and N. R. Jana, “Dopamine functionalized polymeric nanoparticle for targeted drug delivery,” RSC Adv., vol. 5, no. 42, pp. 33586–33594, Apr. 2015, doi: 10.1039/C5RA03302K.
[158] “Determination of Secondary Structure in Proteins by FTIR Spectroscopy - JenaLib.” http://jenalib.leibniz-fli.de/ImgLibDoc/ftir/IMAGE_FTIR.html (accessed Oct. 10, 2021).
[159] X. Wang, H. Gu, and G. Wu, “Facile preparation of tertiary amine grafted poly (α,β-L-aspartic acid) with zwitterionic property to limit nonspecific protein adsorption,” https://doi.org/10.1080/01932691.2020.1805331, 2020, doi: 10.1080/01932691.2020.1805331.
[160] W. Xu, L. Li, W. Yang, J. Hu, C. Wang, and S. Fu, “Amphiphilic hexylamine modified polysuccinimide: Synthesis, characterization, and formation of nanoparticles in aqueous medium,” J. Macromol. Sci. - Pure Appl. Chem., vol. 40 A, no. 5, pp. 511–523, May 2003, doi: 10.1081/MA-120019889.
[161] M. Danaei et al., “Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems,” Pharm. 2018, Vol. 10, Page 57, vol. 10, no. 2, p. 57, May 2018, doi: 10.3390/PHARMACEUTICS10020057.
[162] S. Honary and F. Zahir, “Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2),” Trop. J. Pharm. Res., vol. 12, no. 2, pp. 265–273, May 2013, doi: 10.4314/tjpr.v12i2.20.
[163] G. Mohammadi et al., “Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system,” Colloids Surfaces B Biointerfaces, vol. 88, no. 1, pp. 39–44, Nov. 2011, doi: 10.1016/J.COLSURFB.2011.05.050.
[164] R. H. Fang, S. Aryal, C.-M. J. Hu, and L. Zhang, “Quick Synthesis of Lipid-Polymer Hybrid Nanoparticles with Low Polydispersity Using a Single-Step Sonication Method,” Langmuir, vol. 26, no. 22, pp. 16958–16962, 2010, doi: 10.1021/la103576a.
[165] R. R. Nayak, S. Roy, and J. Dey, “Characterization of polymeric vesicles of poly(sodium 11-acrylamidoundecanoate) in water,” Colloid Polym. Sci. 2006 2852, vol. 285, no. 2, pp. 219–224, Sep. 2006, doi: 10.1007/S00396-006-1554-Z.
[166] S. R. and and J. Dey*, “Self-organization and Microstructures of Sodium 11-Acrylamidoundecanoate in Water,” Langmuir, vol. 19, no. 23, pp. 9625–9629, Nov. 2003, doi: 10.1021/LA0348113.
[167] D. W. Urry, S. Q. Peng, T. M. Parker, D. C. Gowda, and R. D. Harris, “Relative Significance of Electrostatic‐ and Hydrophobic‐Induced pKa Shifts in a Model Protein: The Aspartic Acid Residue,” Angew. Chemie Int. Ed. English, vol. 32, no. 10, pp. 1440–1442, 1993, doi: 10.1002/ANIE.199314401.
[168] S. Yusa, D. Oka, Y. Iwasaki, and K. Ishihara, “pH-Responsive Association Behavior of Biocompatible Random Copolymers Containing Pendent Phosphorylcholine and Fatty Acid,” Langmuir, Oct. 2021, doi: 10.1021/ACS.LANGMUIR.1C02200.
[169] A. S. Mandal et al., “Drug delivery system based on chronobiology—A review,” J. Control. Release, vol. 147, no. 3, pp. 314–325, Nov. 2010, doi: 10.1016/J.JCONREL.2010.07.122.
[170] N. Thattaruparambil Raveendran, A. Mohandas, R. Ramachandran Menon, A. Somasekharan Menon, R. Biswas, and R. Jayakumar, “Ciprofloxacin- and Fluconazole-Containing Fibrin-Nanoparticle-Incorporated Chitosan Bandages for the Treatment of Polymicrobial Wound Infections,” ACS Appl. Bio Mater., vol. 2, no. 1, pp. 243–254, Jan. 2018, doi: 10.1021/ACSABM.8B00585.
[171] H. G. Floss and T. W. Yu, “RifamycinMode of Action, Resistance, and Biosynthesis,” Chem. Rev., vol. 105, no. 2, pp. 621–632, Feb. 2005, doi: 10.1021/CR030112J.
[172] C. K. FRIEDBERG, “ENDOCARDITIS,” Bull. N. Y. Acad. Med., vol. 40, pp. 1121–1140, Jan. 2009, doi: 10.1016/B978-1-4160-3291-5.50085-8.
[173] H. C. Wu, F. W. Shen, X. Hong, W. V. Chang, and H. Winet, “Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique,” Biomaterials, vol. 24, no. 22, pp. 3871–3876, 2003, doi: 10.1016/S0142-9612(03)00135-2.
[174] S. Li and S. McCarthy, “Further investigations on the hydrolytic degradation of poly (DL-lactide),” Biomaterials, vol. 20, no. 1, pp. 35–44, Jan. 1999, doi: 10.1016/S0142-9612(97)00226-3.
[175] J. S. Fabiyi and A. G. McDonald, “Degradation of polypropylene in naturally and artificially weathered plastic matrix composites,” Maderas. Cienc. y Tecnol., vol. 16, no. 3, pp. 275–290, 2014, Accessed: Dec. 12, 2021. [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2014000300002&lng=es&nrm=iso&tlng=en.
[176] H. Bayazian and V. Schoeppner, “Investigation of molecular weight distributions during extrusion process of polypropylene by rheometry experiment ARTICLES YOU MAY BE INTERESTED IN,” vol. 2065, p. 30044, 2019, doi: 10.1063/1.5088302.
[177] “OECD Glossary of Statistical Terms - Biodegradation Definition.” https://stats.oecd.org/glossary/detail.asp?ID=203 (accessed Dec. 20, 2021).
[178] F. Masmoudi, A. Bessadok, M. Dammak, M. Jaziri, and E. Ammar, “Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose,” Environ. Sci. Pollut. Res. 2016 2320, vol. 23, no. 20, pp. 20904–20914, Aug. 2016, doi: 10.1007/S11356-016-7276-Y.
[179] K. E. Rich, “An Investigation into the Biodegradability of Metalworking Lubricants with Regard to BOD/COD Parameter Data,” Stud. Environ. Sci., vol. 25, no. C, pp. 487–498, Jan. 1984, doi: 10.1016/S0166-1116(08)72130-7.
[180] Takeshi Nakato, Masako Yoshitake, and Koshi Matsubara, M. Tomida*, and T. Kakuchi, “Relationships between Structure and Properties of Poly(aspartic acid)s,” Macromolecules, vol. 31, no. 7, pp. 2107–2113, Apr. 1998, doi: 10.1021/MA971629Y.
[181] R. H. Karlson et al., “The Helical Sense of Poly-ß-benzyl-L-aspartate. Synthesis and Rotatory Dispersion of Copolymers of ß-Benzyl-L and D-Aspartate with-Benzyl-L-glutamate1,” Accessed: Dec. 23, 2021. [Online]. Available: https://pubs.acs.org/sharingguidelines.
[182] S. K. Wolk, G. Swift, Y. H. Paik, K. M. Yocom, R. L. Smith, and E. S. Simon, “One-and Two-Dimensional Nuclear Magnetic Resonance Characterization of Poly(aspartic acid) Prepared by Thermal Polymerization of l-Aspartic Acid,” Macromolecules, vol. 27, no. 26, pp. 7613–7620, Dec. 1994, doi: 10.1021/MA00104A016.
[183] J. S. Knapp and K. C. A. Bromley-Challoner, “Recalcitrant organic compounds,” Handb. Water Wastewater Microbiol., pp. 559–595, Jan. 2003, doi: 10.1016/B978-012470100-7/50035-2.
[184] R. K. Singh, S. K. Mishra, B. Velramar, and P. R. Kumar, “Development of biologically-based activated carbon for advanced water and wastewater treatment process,” Bioremediation Pollut., pp. 215–225, Jan. 2020, doi: 10.1016/B978-0-12-819025-8.00009-0.
指導教授 黃俊仁 李宇翔 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明