博碩士論文 108881602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.118.119.174
姓名 沙林(Salim Arrokhman)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 雙酚混合物對斑馬魚胚胎心跳減緩的影響:鈣離子幫浦與鈣離子通道的參與
(The Involvement of Calcium Pump and Channel on the Additive Effects of Bisphenols Mixture in the Development of Bradycardia in Zebrafish Embryos)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙酚A(bisphenol A, BPA)及其取代物雙酚F(bisphenol F, BPF)、雙酚AF(bisphenol AF, BPAF)和雙酚B(bisphenol B, BPB)的廣泛使用,導致人類與野生動物暴露於多種雙酚混合物之中。相對於單一雙酚化合物的毒性測試,雙酚混合物的毒性分析顯得更為重要且有意義。在本研究中,我們利用斑馬魚胚胎(zebrafish embryos, ZFEs)評估雙酚混合物的毒性(mixture toxicity)。我們發現,無論是單獨還是混合處理,這些雙酚化合物均會隨濃度增加而降低ZFE的存活率與心跳率(heart rate)。以濃度相加模型(concentration addition model)可預測雙酚混合物對ZFE心跳率與存活率的影響。雙酚化合物曝露引發的心跳減緩(bradycardia)顯示其心臟毒性潛力。因此,我們進一步探討雙酚減緩心跳的機轉。雙酚化合物曝露會造成斑馬魚與雌激素反應相關的cyp19a1b基因之mRNA表現上升,證實了雙酚已知具有的雌激素活性。然而,利用雌激素受體阻斷劑ICI 182780雖然可以成功降低雌激素活性,卻未能減輕雙酚曝露所引發的心跳減緩。另外,雙酚化合物的影響僅限於心肌傳導,而非在於心肌收縮力。此外,雙酚化合物曝露對心肌細胞數量並無影響,僅輕微影響了與心肌細胞發育相關基因的mRNA表現。但是雙酚化合物可能藉由降低L型鈣離子通道(L-type calcium channel LTCC)的成孔次單位(pore-forming subunit, cacna1c)之mRNA表現與肌漿網鈣離子幫浦(sarco/endoplasmic reticulum Ca2+-ATPase, SERCA)的活性,而擾亂鈣離子平衡(calcium homeostasis)。此外,雙酚化合物可藉由抑制SERCA活性,而加劇LTCC阻斷劑引發的心臟毒性。綜上所述,我們的結果顯示雙酚混合物具有相加效應(additive effect)性質,而雙酚混合物與鈣離子通道阻斷劑的作用可能會造成難以預測的毒性效應,還有待未來進一步的研究探討。
摘要(英) Widespread use of bisphenols such as bisphenol A (BPA) and its substitutes bisphenol F (BPF), bisphenol AF (BPAF), and bisphenol B (BPB) lead to a concurrent exposure of multiple bisphenols in human and wildlife. Therefore, analyzing the toxicity of bisphenols in a mixture, rather than individually, is more appropriate. In the present study, we used zebrafish embryos (ZFEs) to assess bisphenols mixture toxicity. We discovered that bisphenols, either individually or in a mixture, concentration-dependently reduced the survival and heart rate of ZFEs. Moreover, the concentration addition model could be used to predict the effects of the bisphenols mixture on the ZFE′s heart rate and survival. Heart rate reduction (bradycardia) induced by bisphenol exposure indicated their cardiotoxic potency. Hence, we sought to explore the mechanisms behind bradycardia induced by bisphenols exposure. Bisphenols exposure upregulated mRNA expressions of an estrogen-responsive gene in zebrafish cyp19a1b, in concordance with a well-known estrogenic activity of bisphenols. Pharmacological blocking of estrogen receptors with ICI 182780 successfully reduced the estrogenic activity but failed to rescue bradycardia induced by bisphenols exposure. Bisphenols seem to affect only cardiac conductivity since there is no change in cardiac contractility parameters. Furthermore, bisphenols exposure has no effects on cardiomyocyte numbers and mildly affects mRNA levels of genes related to cardiomyocyte development. We found that bisphenols might compromise calcium homeostasis by reducing mRNA levels of the pore-forming subunit of L-type calcium channel (cacna1c/LTCC) and the activity of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). In addition, bisphenols potentiated LTCC blocker-mediated cardiotoxicity, possibly through the inhibition of SERCA activity. Altogether, our results revealed an additive nature of bisphenols in a mixture and their unpredicted toxicity with a calcium channel blocker that warrants further study.
關鍵字(中) ★ 關鍵詞:雙酚化合物
★ 混合物毒性
★ 心動過緩
★ 加成作用
★ 增效作用
關鍵字(英) ★ Bisphenols
★ Mixture toxicity
★ Bradycardia
★ Additive
★ Potentiation
論文目次 中文摘要 iv
Abstract v
Acknowledgment vi
Publication arising during PhD candidature vii
Abstracts arising from this thesis viii
Table of contents ix
List of Figures xi
List of Tables xii
Explanation of Symbols and Abbreviations xiii
Chapter I. Introduction 1
1-1 Human and environmental exposure to bisphenols 1
1-2 Cardiotoxicity of bisphenol A and its analogues 4
1-3 Single and mixture toxicity assessment 5
1-4 Zebrafish as an animal model 6
1-5 Research objectives 6
1-6 Hypotheses 7
Chapter II. Methods 9
2-1 Experimental design 9
2-2 Zebrafish husbandry 11
2-3 Chemical preparation 11
2-4 Chemical exposure – mortality assessment 12
2-5 Chemical exposure – heart rate assessment and others 12
2-6 Mixture toxicity assessment 14
2-7 Cardiac phenotypic analysis 18
2-8 Mechanistic studies 19
2-8-1 Bisphenols affect zebrafish heart rate through estrogen receptors 19
2-8-2 Bisphenols affect zebrafish heart rate through oxidative stress 20
2-8-3 Bisphenols affect zebrafish heart rate through impairing cardiomyocyte development 20
2-8-4 Bisphenols affect zebrafish heart rate through impairing calcium homeostasis 21
2-9 Gene expression analysis 22
2-10 Immunohistochemistry 22
2-11 Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity assay 23
2-12 Statistical analysis 24
Chapter III. Results 26
3-1 Bisphenols additively decreased survival of ZFEs 26
3-2 Bisphenols additively induce bradycardia in the ZFEs 27
3-3 Bisphenols induced bradycardia at concentrations below that of the BMDL10 of mortality 29
3-4. Bisphenols did not affect the cardiac contractility of ZFEs 31
3-5. Bisphenols estrogenic activity was not correlated with their cardiotoxicity 33
3-6. Oxidative stress might not be responsible for the bradycardia-inducing effects of bisphenols 34
3-7. Cardiomyocyte development might not be affected by bisphenols at concentrations that induced bradycardia 35
3-8. Bisphenols affect mRNA levels of Ca2+ channels and pump which are responsible for maintaining cardiac action potential in ZFEs 37
3-9. Bisphenol interacts with an LTCC blocker via SERCA activity inhibition 38
Chapter IV. Discussion 42
Chapter V. Conclusion 47
Bibliography 48
Appendix 54
參考文獻 [1] Zhu X, Wu G, Xing Y, Wang C, Yuan X, Li B. Evaluation of single and combined toxicity of bisphenol A and its analogues using a highly-sensitive micro-biosensor. J Hazard Mater. 2020;381:120908.
[2] Jiang D, Chen WQ, Zeng X, Tang L. Dynamic Stocks and Flows Analysis of Bisphenol A (BPA) in China: 2000-2014. Environ Sci Technol. 2018;52(6):3706-15.
[3] Radwan M, Wielgomas B, Dziewirska E, Radwan P, Kaluzny P, Klimowska A, et al. Urinary Bisphenol A Levels and Male Fertility. Am J Mens Health. 2018;12(6):2144-51.
[4] Cantonwine DE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Urinary Bisphenol A Levels during Pregnancy and Risk of Preterm Birth. Environ Health Perspect. 2015;123(9):895-901.
[5] Trasande L, Attina TM, Blustein J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 2012;308(11):1113-21.
[6] Ranciere F, Botton J, Slama R, Lacroix MZ, Debrauwer L, Charles MA, et al. Exposure to Bisphenol A and Bisphenol S and Incident Type 2 Diabetes: A Case-Cohort Study in the French Cohort D.E.S.I.R. Environ Health Perspect. 2019;127(10):107013.
[7] Melzer D, Osborne NJ, Henley WE, Cipelli R, Young A, Money C, et al. Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation. 2012;125(12):1482-90.
[8] Cai S, Rao X, Ye J, Ling Y, Mi S, Chen H, et al. Relationship between urinary bisphenol a levels and cardiovascular diseases in the U.S. adult population, 2003-2014. Ecotoxicol Environ Saf. 2020;192:110300.
[9] Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, et al. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review. Environ Sci Technol. 2016;50(11):5438-53.
[10] Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment - A review. Ecotoxicol Environ Saf. 2021;208:111481.
[11] Wong YM, Li R, Lee CKF, Wan HT, Wong CKC. The measurement of bisphenol A and its analogues, perfluorinated compounds in twenty species of freshwater and marine fishes, a time-trend comparison and human health based assessment. Mar Pollut Bull. 2017;124(2):743-52.
[12] Akhbarizadeh R, Moore F, Monteiro C, Fernandes JO, Cunha SC. Occurrence, trophic transfer, and health risk assessment of bisphenol analogues in seafood from the Persian Gulf. Mar Pollut Bull. 2020;154:111036.
[13] Mustieles V, D′Cruz SC, Couderq S, Rodriguez-Carrillo A, Fini JB, Hofer T, et al. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. Environ Int. 2020;144:105811.
[14] Russo G, Laneri S, Di Lorenzo R, Ferrara L, Grumetto L. The occurrence of selected endocrine-disrupting chemicals in water and sediments from an urban lagoon in Southern Italy. Water Environ Res. 2021;93(10):1944-58.
[15] Wang W, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B, et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ Int. 2015;83:183-91.
[16] Bjornsdotter MK, de Boer J, Ballesteros-Gomez A. Bisphenol A and replacements in thermal paper: A review. Chemosphere. 2017;182:691-706.
[17] Wang L, Zhang Y, Liu Y, Gong X, Zhang T, Sun H. Widespread Occurrence of Bisphenol A in Daily Clothes and Its High Exposure Risk in Humans. Environ Sci Technol. 2019;53(12):7095-102.
[18] Akhbarizadeh R, Russo G, Rossi S, Golianova K, Moore F, Guida M, et al. Emerging endocrine disruptors in two edible fish from the Persian Gulf: Occurrence, congener profile, and human health risk assessment. Mar Pollut Bull. 2021;166:112241.
[19] Barboza LGA, Cunha SC, Monteiro C, Fernandes JO, Guilhermino L. Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. J Hazard Mater. 2020;393:122419.
[20] Wang Q, Chen M, Shan G, Chen P, Cui S, Yi S, et al. Bioaccumulation and biomagnification of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Sci Total Environ. 2017;598:814-20.
[21] Zhao N, Hu H, Zhao M, Liu W, Jin H. Occurrence of Free-Form and Conjugated Bisphenol Analogues in Marine Organisms. Environ Sci Technol. 2021;55(8):4914-22.
[22] Yan Z, Liu Y, Yan K, Wu S, Han Z, Guo R, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere. 2017;184:318-28.
[23] Zhang H, Zhang Y, Li J, Yang M. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci Total Environ. 2019;655:607-13.
[24] Zhao X, Qiu W, Zheng Y, Xiong J, Gao C, Hu S. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicol Environ Saf. 2019;180:43-52.
[25] Sauer P, Svecova H, Grabicova K, Gonul Aydin F, Mackulak T, Kodes V, et al. Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities. Sci Total Environ. 2021;751:141801.
[26] Asimakopoulos AG, Xue J, De Carvalho BP, Iyer A, Abualnaja KO, Yaghmoor SS, et al. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ Res. 2016;150:573-81.
[27] Gys C, Ait Bamai Y, Araki A, Bastiaensen M, Caballero-Casero N, Kishi R, et al. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ Res. 2020;191:110172.
[28] Chen Y, Fang J, Ren L, Fan R, Zhang J, Liu G, et al. Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure. Environ Pollut. 2018;238:299-305.
[29] Fan D, Liang M, Guo M, Gu W, Gu J, Liu M, et al. Exposure of preschool-aged children to highly-concerned bisphenol analogues in Nanjing, East China. Ecotoxicol Environ Saf. 2022;234:113397.
[30] Mok S, Lim JE, Lee A, Kim S, Kim S, Lee I, et al. Within- and between-person variability of urinary phthalate metabolites and bisphenol analogues over seven days: Considerations of biomonitoring study design. Environ Res. 2022;209:112885.
[31] Zou Z, Cini K, Dong B, Ma Y, Ma J, Burgner DP, et al. Time Trends in Cardiovascular Disease Mortality Across the BRICS: An Age-Period-Cohort Analysis of Key Nations With Emerging Economies Using the Global Burden of Disease Study 2017. Circulation. 2020;141(10):790-9.
[32] Han C, Hong YC. Bisphenol A, Hypertension, and Cardiovascular Diseases: Epidemiological, Laboratory, and Clinical Trial Evidence. Curr Hypertens Rep. 2016;18(2):11.
[33] Moon S, Yu SH, Lee CB, Park YJ, Yoo HJ, Kim DS. Effects of bisphenol A on cardiovascular disease: An epidemiological study using National Health and Nutrition Examination Survey 2003-2016 and meta-analysis. Sci Total Environ. 2021;763:142941.
[34] Liu X, Sakai H, Nishigori M, Suyama K, Nawaji T, Ikeda S, et al. Receptor-binding affinities of bisphenol A and its next-generation analogs for human nuclear receptors. Toxicol Appl Pharmacol. 2019;377:114610.
[35] Cao LY, Ren XM, Li CH, Zhang J, Qin WP, Yang Y, et al. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. Environ Sci Technol. 2017;51(19):11423-30.
[36] Yan S, Chen Y, Dong M, Song W, Belcher SM, Wang HS. Bisphenol A and 17beta-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS One. 2011;6(9):e25455.
[37] Belcher SM, Chen Y, Yan S, Wang HS. Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17beta-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology. 2012;153(2):712-20.
[38] Romano SN, Edwards HE, Souder JP, Ryan KJ, Cui X, Gorelick DA. G protein-coupled estrogen receptor regulates embryonic heart rate in zebrafish. PLoS Genet. 2017;13(10):e1007069.
[39] Yang S, Cheng W, Li X, Liang F, Zhou R, Wang H, et al. Use of embryonic stem cell-derived cardiomyocytes to study cardiotoxicity of bisphenol AF via the GPER/CAM/eNOS pathway. Toxicology. 2020;432:152380.
[40] Aboul Ezz HS, Khadrawy YA, Mourad IM. The effect of bisphenol A on some oxidative stress parameters and acetylcholinesterase activity in the heart of male albino rats. Cytotechnology. 2015;67(1):145-55.
[41] Gu J, Wang H, Zhou L, Fan D, Shi L, Ji G, et al. Oxidative stress in bisphenol AF-induced cardiotoxicity in zebrafish and the protective role of N-acetyl N-cysteine. Sci Total Environ. 2020;731:139190.
[42] Bopp SK, Kienzler A, Richarz AN, van der Linden SC, Paini A, Parissis N, et al. Regulatory assessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol. 2019;49(2):174-89.
[43] Kortenkamp A, Faust M. Regulate to reduce chemical mixture risk. Science. 2018;361(6399):224-6.
[44] WHO. Chemical mixtures in source water and drinking-water. Geneva: World Health Organization; 2017.
[45] OECD. Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals. Paris: OECD Publishing; 2018.
[46] EFSA. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal. 2013;11(7):3290.
[47] Heys KA, Shore RF, Pereira MG, Jones KC, Martin FL. Risk assessment of environmental mixture effects. Rsc Adv. 2016;6(53):47844-57.
[48] Garcia GR, Noyes PD, Tanguay RL. Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther. 2016;161:11-21.
[49] Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, et al. Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol. 2010;6(3):231-7.
[50] Padilla S, Corum D, Padnos B, Hunter DL, Beam A, Houck KA, et al. Zebrafish developmental screening of the ToxCast Phase I chemical library. Reprod Toxicol. 2012;33(2):174-87.
[51] Gao Y, Li A, Zhang W, Pang S, Liang Y, Song M. Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol. 2022;246:106154.
[52] Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol Sci. 2019;172(1):23-37.
[53] Qiu W, Liu S, Chen H, Luo S, Xiong Y, Wang X, et al. The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms. J Hazard Mater. 2021;406:124303.
[54] Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol. 2012;46(5):2564-73.
[55] van Eif VWW, Devalla HD, Boink GJJ, Christoffels VM. Transcriptional regulation of the cardiac conduction system. Nat Rev Cardiol. 2018;15(10):617-30.
[56] Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004-21.
[57] Burkhard SB, Bakkers J. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/beta-catenin signaling in autonomic control of heart rate. Elife. 2018;7.
[58] Wang Z, Nishimura Y, Shimada Y, Umemoto N, Hirano M, Zang L, et al. Zebrafish beta-adrenergic receptor mRNA expression and control of pigmentation. Gene. 2009;446(1):18-27.
[59] Steele SL, Lo KH, Li VW, Cheng SH, Ekker M, Perry SF. Loss of M2 muscarinic receptor function inhibits development of hypoxic bradycardia and alters cardiac beta-adrenergic sensitivity in larval zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol. 2009;297(2):R412-20.
[60] Schwerte T, Prem C, Mairosl A, Pelster B. Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis. J Exp Biol. 2006;209(Pt 6):1093-100.
[61] Skledar DG, Masic LP. In vitro estrogenic activity of binary and multicomponent mixtures with bisphenol A. Sci Total Environ. 2020;707:135211.
[62] Conley JM, Hannas BR, Furr JR, Wilson VS, Gray LE, Jr. A Demonstration of the Uncertainty in Predicting the Estrogenic Activity of Individual Chemicals and Mixtures From an In Vitro Estrogen Receptor Transcriptional Activation Assay (T47D-KBluc) to the In Vivo Uterotrophic Assay Using Oral Exposure. Toxicol Sci. 2016;153(2):382-95.
[63] Moreman J, Lee O, Trznadel M, David A, Kudoh T, Tyler CR. Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae. Environ Sci Technol. 2017;51(21):12796-805.
[64] Ulhaq ZS, Kishida M. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae. Front Endocrinol (Lausanne). 2018;9:230.
[65] Macczak A, Cyrkler M, Bukowska B, Michalowicz J. Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicol In Vitro. 2017;41:143-9.
[66] Meng Z, Tian S, Yan J, Jia M, Yan S, Li R, et al. Effects of perinatal exposure to BPA, BPF and BPAF on liver function in male mouse offspring involving in oxidative damage and metabolic disorder. Environ Pollut. 2019;247:935-43.
[67] Huang W, Shi X, Chen Y, Zhang Q, Peng J, Zheng S, et al. Comparative pharyngeal cartilage developmental toxicity of bisphenol A, bisphenol S and bisphenol AF to zebrafish (Danio rerio) larvae: A combination of morphometry and global transcriptome analyses. Sci Total Environ. 2023;868:161702.
[68] Zhou R, Xia M, Zhang L, Cheng W, Yan J, Sun Y, et al. Individual and combined effects of BPA, BPS and BPAF on the cardiomyocyte differentiation of embryonic stem cells. Ecotoxicol Environ Saf. 2021;220:112366.
[69] Lombo M, Gonzalez-Rojo S, Fernandez-Diez C, Herraez MP. Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate. Environ Pollut. 2019;246:1008-19.
[70] Huang Q, Fang C, Chen Y, Wu X, Ye T, Lin Y, et al. Embryonic exposure to low concentration of bisphenol A affects the development of Oryzias melastigma larvae. Environ Sci Pollut Res Int. 2011;19(7):2506-14.
[71] Eisner DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and Excitation-Contraction Coupling in the Heart. Circ Res. 2017;121(2):181-95.
[72] Prudencio TM, Swift LM, Guerrelli D, Cooper B, Reilly M, Ciccarelli N, et al. Bisphenol S and Bisphenol F Are Less Disruptive to Cardiac Electrophysiology, as Compared With Bisphenol A. Toxicol Sci. 2021;183(1):214-26.
[73] Little AG, Seebacher F. Temperature determines toxicity: bisphenol A reduces thermal tolerance in fish. Environ Pollut. 2015;197:84-9.
[74] You MS, Jiang YJ, Yuh CH, Wang CM, Tang CH, Chuang YJ, et al. A Sketch of the Taiwan Zebrafish Core Facility. Zebrafish. 2016;13 Suppl 1:S24-9.
[75] Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310.
[76] OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Paris: OECD Publishing; 2013.
[77] Zhang S, Ireland D, Sipes NS, Behl M, Collins ES. Screening for neurotoxic potential of 15 flame retardants using freshwater planarians. Neurotoxicol Teratol. 2019;73:54-66.
[78] Tian L, Sheng D, Li Q, Guo C, Zhu G. Preliminary safety assessment of oridonin in zebrafish. Pharm Biol. 2019;57(1):632-40.
[79] Benslimane FM, Zakaria ZZ, Shurbaji S, Abdelrasool MKA, Al-Badr M, Al Absi ESK, et al. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron. 2020;136:102876.
[80] Yalcin HC, Amindari A, Butcher JT, Althani A, Yacoub M. Heart function and hemodynamic analysis for zebrafish embryos. Dev Dyn. 2017;246(11):868-80.
[81] Lassiter CS, Linney E. Embryonic expression and steroid regulation of brain aromatase cyp19a1b in zebrafish (Danio rerio). Zebrafish. 2007;4(1):49-57.
[82] Rastogi A, Clark CW, Conlin SM, Brown SE, Timme-Laragy AR. Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo. Redox Biol. 2019;26:101235.
[83] Usenko CY, Harper SL, Tanguay RL. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol. 2008;229(1):44-55.
[84] Shi X, Zhou B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci. 2010;115(2):391-400.
[85] Holowiecki A, O′Shields B, Jenny MJ. Characterization of heme oxygenase and biliverdin reductase gene expression in zebrafish (Danio rerio): Basal expression and response to pro-oxidant exposures. Toxicol Appl Pharmacol. 2016;311:74-87.
[86] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-8.
[87] Arrokhman S, Wijayanti N, Soegianto A. Survival and osmoregulation of juvenile of hybrid grouper (Epinephelus fuscoguttatus x Epinephelus lanceolatus) during acclimation in calcium-supplemented freshwater. Aquacult Int. 2017;25(2):693-704.
[88] Little AG, Seebacher F. Thyroid hormone regulates cardiac performance during cold acclimation in zebrafish (Danio rerio). J Exp Biol. 2014;217(Pt 5):718-25.
[89] Belden JB, Gilliom RJ, Lydy MJ. How Well Can We Predict the Toxicity of Pesticide Mixtures to Aquatic Life? Integr Environ Asses. 2007;3(3):E1-E5.
[90] Martin O, Scholze M, Ermler S, McPhie J, Bopp SK, Kienzler A, et al. Ten years of research on synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ Int. 2021;146:106206.
[91] Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751-62.
[92] Vazquez C, Mejia-Tlachi M, Gonzalez-Chavez Z, Silva A, Rodriguez-Zavala JS, Moreno-Sanchez R, et al. Buthionine sulfoximine is a multitarget inhibitor of trypanothione synthesis in Trypanosoma cruzi. FEBS Lett. 2017;591(23):3881-94.
[93] Tzaneva V, Perry SF. Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish (Danio rerio) larvae exposed to hypoxia. J Exp Biol. 2016;219(Pt 10):1563-71.
[94] de Pater E, Clijsters L, Marques SR, Lin YF, Garavito-Aguilar ZV, Yelon D, et al. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart. Development. 2009;136(10):1633-41.
[95] Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC. Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell. 2001;1(2):265-75.
[96] Escher B, Braun G, Zarfl C. Exploring the Concepts of Concentration Addition and Independent Action Using a Linear Low-Effect Mixture Model. Environ Toxicol Chem. 2020;39(12):2552-9.
[97] Lalwani D, Ruan Y, Taniyasu S, Yamazaki E, Kumar NJI, Lam PKS, et al. Nationwide distribution and potential risk of bisphenol analogues in Indian waters. Ecotoxicol Environ Saf. 2020;200:110718.
[98] Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PK, Moon HB, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf. 2015;122:565-72.
[99] Krishna S, Berridge B, Kleinstreuer N. High-Throughput Screening to Identify Chemical Cardiotoxic Potential. Chem Res Toxicol. 2021;34(2):566-83.
[100] Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, et al. Key Characteristics of Cardiovascular Toxicants. Environ Health Perspect. 2021;129(9):95001.
[101] Li R, Zupanic A, Talikka M, Belcastro V, Madan S, Dorpinghaus J, et al. Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chem Res Toxicol. 2020;33(10):2550-64.
[102] Tvrdy V, Dias P, Nejmanova I, Carazo A, Jirkovsky E, Pourova J, et al. The effects of bisphenols on the cardiovascular system ex vivo and in vivo. Chemosphere. 2023;313:137565.
[103] Deutschmann A, Hans M, Meyer R, Haberlein H, Swandulla D. Bisphenol A inhibits voltage-activated Ca(2+) channels in vitro: mechanisms and structural requirements. Mol Pharmacol. 2013;83(2):501-11.
[104] Woeste M, Steller J, Hofmann E, Kidd T, Patel R, Connolly K, et al. Structural requirements for inhibitory effects of bisphenols on the activity of the sarco/endoplasmic reticulum calcium ATPase. Bioorg Med Chem. 2013;21(13):3927-33.
[105] Saari GN, Scott WC, Brooks BW. Global scanning assessment of calcium channel blockers in the environment: Review and analysis of occurrence, ecotoxicology and hazards in aquatic systems. Chemosphere. 2017;189:466-78.
[106] Tadini-Buoninsegni F, Smeazzetto S, Gualdani R, Moncelli MR. Drug Interactions With the Ca(2+)-ATPase From Sarco(Endo)Plasmic Reticulum (SERCA). Front Mol Biosci. 2018;5:36.
[107] Al-Mousa F, Michelangeli F. The sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase (SERCA) is the likely molecular target for the acute toxicity of the brominated flame retardant hexabromocyclododecane (HBCD). Chem Biol Interact. 2014;207:1-6.
指導教授 林嬪嬪 羅月霞(Pinpin Lin Yueh-Hsia Luo) 審核日期 2023-12-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明