博碩士論文 109222014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.16.83.150
姓名 歐陽明崴(OuYang, Min-Wei)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(The analysis of the TASEH CD102 data)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC
★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector★ 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態
★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率
★ The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV★ 於尋找單希格斯粒子中研究噴流子結構可觀測量
★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣軸子偵測實驗(TASEH)是一個尋找質量為20 μeV 的軸子和類軸
子粒子的實驗,軸子同時也是暗物質的候選粒子之一,在本實驗中,我們
使用微波共振腔和低噪放大器檢測強磁場下軸子轉換成光子的信號,本篇
論文會詳細描述我們是如何設計實驗參數跟分析我們於西元2021年10月至
11月所取的實驗數據。
摘要(英) The Taiwan Axion Search Experiment with Haloscope (TASEH) is a haloscope experiment to search for axions and axion-like-particles with a mass of 20 µeV. The axion is a compelling particle candidate for dark matter. In this experiment, we use a microwave cavity and low-noise amplifiers to detect the signal of axion-to-photon conversion under a strong magnetic field.
This is a thesis about the design of experimental parameters and the analysis of the CD102 data that were collected in October-November 2021.
關鍵字(中) ★ 軸子
★ 暗物質
關鍵字(英) ★ Axion
★ dark matter
★ TASEH
★ Haloscope
論文目次 1 Introduction 1
1.1 The Axion 1
1.2 Other Axion Experiments 2
1.3 Taiwan Axion Search Experiment with Haloscope 4
1.3.1 Overview 4
1.3.2 Cavity 4
1.3.3 Dilution refrigerator 6
1.3.4 Readout 6
2 Axion signal 9
2.1 Overview 9
2.2 signal 9
2.3 The target signal-to-noise ratio 10
3 Experimental Parameters 13
3.1 Overview 13
3.2 Calibration of the amplification chain 13
3.3 Expected limit 15
3.3.1 Lorentz distribution 15
3.3.2 Step size 16
3.3.3 Scan rate 16
3.3.4 Determination of the parameters 18
4 Data Analysis 21
4.1 Overview 21
4.2 Date format and storage 21
4.3 Analysis step 21
4.3.1 Fast Fourier transform 22
4.3.2 The Savitzky-Golay Filter 23
4.3.3 Rescale the spectrum 26
4.3.4 Combine the spectrum vertically 26
4.3.5 Combine the spectrum horizontally 28
4.3.6 Rescan 29
4.3.7 Set the limit on |gaγγ| 30
4.4 CD096 32
4.4.1 Overview 32
4.4.2 Conclusion 32
4.5 CD099 33
4.5.1 Hemt calibration result 33
4.5.2 Experimental parameters 35
4.5.3 Data taking 36
4.5.4 The study of HEMT response as a function of time 38
4.5.5 Process of analysis 42
4.5.6 Conclusion 44
4.6 CD102 45
4.6.1 Overview 45
4.6.2 Hemt calibration result 45
4.6.3 Experimental parameters 46
4.6.4 Monitor system 49
4.6.5 Data taking 51
4.6.6 Rescan 53
4.6.7 Hemt drift 55
4.6.8 Process of analysis 60
4.6.9 Synthetic axion 62
4.6.10 Set the limit with various way 65
4.6.11 Systematic uncertainties 67
4.6.12 Conclusion 68
5 Conclusion 71
bibliography 73
參考文獻 [1] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In: Phys. Rev. Lett. 38 (25 1977), pp. 1440–1443. DOI: 10.1103/PhysRevLett.
38.1440. URL: https://link.aps.org/doi/10.1103/PhysRevLett.38.
1440.
[2] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 1978), pp. 223–226.
DOI: 10.1103/PhysRevLett.40.223. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.40.223.
[3] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”. In:
Phys. Rev. Lett. 40 (5 1978), pp. 279–282. DOI: 10.1103/PhysRevLett.40.279. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
[4] S. Borsanyi et al. “Calculation of the axion mass based on high-temperature lattice
quantum chromodynamics”. In: Nature 539.7627 (2016), pp. 69–71. DOI: 10.1038/
nature20115. arXiv: 1606.07494 [hep-lat].
[5] Michael Dine et al. “Axions, Instantons, and the Lattice”. In: Phys. Rev. D 96.9 (2017),
p. 095001. DOI: 10.1103/PhysRevD.96.095001. arXiv: 1705.00676 [hep-ph].
[6] Takashi Hiramatsu et al. “Improved estimation of radiated axions from cosmological
axionic strings”. In: Phys. Rev. D 83 (2011), p. 123531. DOI: 10.1103/PhysRevD.83.
123531. arXiv: 1012.5502 [hep-ph].
[7] Masahiro Kawasaki, Ken’ichi Saikawa, and Toyokazu Sekiguchi. “Axion dark matter
from topological defects”. In: Phys. Rev. D 91.6 (2015), p. 065014. DOI: 10 . 1103 /
PhysRevD.91.065014. arXiv: 1412.0789 [hep-ph].
73
[8] Evan Berkowitz, Michael I. Buchoff, and Enrico Rinaldi. “Lattice QCD input for axion
cosmology”. In: Phys. Rev. D 92.3 (2015), p. 034507. DOI: 10.1103/PhysRevD.92.
034507. arXiv: 1505.07455 [hep-ph].
[9] Leesa Fleury and Guy D. Moore. “Axion dark matter: strings and their cores”. In: J.
Cosmol. Astropart. Phys. 01.2016 (2016), pp. 004–004. DOI: 10 . 1088 / 1475 - 7516 /
2016/01/004. URL: https://doi.org/10.1088/1475-7516/2016/01/004.
[10] Claudio Bonati et al. “Axion phenomenology and θ-dependence from Nf = 2 + 1
lattice QCD”. In: JHEP 03.2016 (2016), p. 155. DOI: 10.1007/JHEP03(2016)155.
arXiv: 1512.06746 [hep-lat].
[11] Peter Petreczky, Hans-Peter Schadler, and Sayantan Sharma. “The topological susceptibility in finite temperature QCD and axion cosmology”. In: Phys. Lett. B 762 (2016),
pp. 498–505. DOI: 10 . 1016 / j . physletb . 2016 . 09 . 063. arXiv: 1606 . 03145
[hep-lat].
[12] Guillermo Ballesteros et al. “Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism”. In: Phys. Rev. Lett. 118.7 (2017), p. 071802. DOI:
10.1103/PhysRevLett.118.071802. arXiv: 1608.05414 [hep-ph].
[13] Vincent B. Klaer and Guy D. Moore. “The dark-matter axion mass”. In: J. Cosmol. Astropart. Phys. 11.2017 (2017), p. 049. DOI: 10 . 1088 / 1475 - 7516 / 2017 / 11 / 049.
arXiv: 1708.07521 [hep-ph].
[14] Malte Buschmann, Joshua W. Foster, and Benjamin R. Safdi. “Early-Universe Simulations of the Cosmological Axion”. In: Phys. Rev. Lett. 124.16 (2020), p. 161103. DOI:
10.1103/PhysRevLett.124.161103. arXiv: 1906.00967 [astro-ph.CO].
[15] Marco Gorghetto, Edward Hardy, and Giovanni Villadoro. “More axions from strings”.
In: SciPost Phys. 10.2 (2021), p. 050. DOI: 10.21468/SciPostPhys.10.2.050. arXiv:
2007.04990 [hep-ph].
74
[16] Malte Buschmann et al. “Dark matter from axion strings with adaptive mesh refinement”. In: Nature Commun. 13.1 (2022), p. 1049. DOI: 10.1038/s41467-022-28669-
y. arXiv: 2108.05368 [hep-ph].
[17] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett. 51 (16 1983),
pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.51.1415.
[18] P. Sikivie. “Detection rates for “invisible”-axion searches”. In: Phys. Rev. D 32 (11 1985),
pp. 2988–2991. DOI: 10.1103/PhysRevD.32.2988. URL: https://link.aps.
org/doi/10.1103/PhysRevD.32.2988.
[19] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett.
43 (1979), p. 103. DOI: 10.1103/PhysRevLett.43.103.
[20] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement
Ensure Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B 166 (1980),
pp. 493–506. DOI: 10.1016/0550-3213(80)90209-6.
[21] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the Strong
CP Problem with a Harmless Axion”. In: Phys. Lett. B 104 (1981), pp. 199–202. DOI:
10.1016/0370-2693(81)90590-6.
[22] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.
[23] C. Hagmann et al. “Results from a High-Sensitivity Search for Cosmic Axions”. In:
Phys. Rev. Lett. 80 (10 1998), pp. 2043–2046. DOI: 10.1103/PhysRevLett.80.2043.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.80.2043.
[24] S. J. Asztalos et al. “Experimental Constraints on the Axion Dark Matter Halo Density”. In: The Astrophysical Journal 571.1 (2002), pp. L27–L30. DOI: 10.1086/341130.
URL: https://doi.org/10.1086/341130.
75
[25] S. J. Asztalos et al. “Improved rf cavity search for halo axions”. In: Phys. Rev. D 69 (1
2004), 011101 (R). DOI: 10.1103/PhysRevD.69.011101. URL: https://link.
aps.org/doi/10.1103/PhysRevD.69.011101.
[26] S. J. Asztalos et al. “SQUID-Based Microwave Cavity Search for Dark-Matter Axions”.
In: Phys. Rev. Lett. 104 (4 2010), p. 041301. DOI: 10 . 1103 / PhysRevLett . 104 .
041301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.104.
041301.
[27] N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 120 (15 2018), p. 151301. DOI: 10.1103/PhysRevLett.
120.151301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
120.151301.
[28] T. Braine et al. “Extended Search for the Invisible Axion with the Axion Dark Matter
Experiment”. In: Phys. Rev. Lett. 124 (10 2020), p. 101303. DOI: 10.1103/PhysRevLett.
124.101303. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
124.101303.
[29] C. Bartram et al. “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass
Range”. In: Phys. Rev. Lett. 127.26 (2021), p. 261803. DOI: 10.1103/PhysRevLett.
127.261803.
[30] S. Lee et al. “Axion Dark Matter Search around 6.7 µeV”. In: Phys. Rev. Lett. 124.10
(2020), p. 101802. DOI: 10.1103/PhysRevLett.124.101802. arXiv: 2001.05102
[hep-ex].
[31] Junu Jeong et al. “Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope”. In: Phys. Rev. Lett. 125.22 (2020), p. 221302. DOI: 10.1103/PhysRevLett.
125.221302. arXiv: 2008.10141 [hep-ex].
[32] Ohjoon Kwon et al. “First Results from an Axion Haloscope at CAPP around 10.7 µeV”.
In: Phys. Rev. Lett. 126 (19 2021), p. 191802. DOI: 10 . 1103 / PhysRevLett . 126 .
191802. URL: https://link.aps.org/doi/10.1103/PhysRevLett.126.
191802.
76
[33] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. In: Nature
590.7845 (2021), 238–242. ISSN: 1476-4687. DOI: 10.1038/s41586-021-03226-7.
URL: http://dx.doi.org/10.1038/s41586-021-03226-7.
[34] B. M. Brubaker et al. “First results from a microwave cavity axion search at 24 µeV”. In:
Phys. Rev. Lett. 118.6 (2017), p. 061302. DOI: 10.1103/PhysRevLett.118.061302.
arXiv: 1610.02580 [astro-ph.CO].
[35] L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion experiment”. In: Phys. Rev. D 97.9 (2018), p. 092001. DOI: 10.1103/PhysRevD.97.092001.
arXiv: 1803.03690 [hep-ex].
[36] “New CAST limit on the axion–photon interaction”. In: Nature Physics 13.6 (2017),
pp. 584–590. DOI: 10.1038/nphys4109. URL: https://arxiv.org/abs/1705.
02290.
[37] Peter W. Graham et al. “Experimental Searches for the Axion and Axion-Like Particles”. In: Annual Review of Nuclear and Particle Science 65.1 (2015), pp. 485–514. DOI:
10.1146/annurev-nucl-102014-022120. URL: https://arxiv.org/abs/
1602.00039.
[38] Hsin Chang et al. “TASEH: A haloscope axion search experiment”. In: (May 2022).
arXiv: 2205 . 01477 [physics.ins-det]. URL: https : / / arxiv . org / abs /
2205.01477.
[39] C. Bartram et al. “Axion dark matter experiment: Run 1B analysis details”. In: Phys.
Rev. D 103 (3 2021), p. 032002. DOI: 10.1103/PhysRevD.103.032002. URL: https:
//link.aps.org/doi/10.1103/PhysRevD.103.032002.
指導教授 余欣珊(Shin-Shan Yu) 審核日期 2022-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明