博碩士論文 109222016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.191.228.88
姓名 陳俊諺(Chun-Yen Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 具電阻切換行為之氧化鋁磁性穿隧接面中低頻雜訊與傳輸機制研究
(Low-frequency Noise and Charge Transport in AlOx Magnetic Tunnel Junction with Resistive Switching)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 我們研究了具有雙極電阻開關特性的超薄氧化鋁磁穿隧接面中的低頻雜訊。 從隨機電報雜訊對偏壓的關係,揭示了在高與低電阻狀態下瞬間傳輸動態(電子被捕獲或釋放)的檢測,當調控鐵磁金屬之費米能級靠近AlO$_x$ 的缺陷態時,偵測到這兩種電阻態具有不同的局部缺陷能量與位置。同時實驗的結果也藉由緊束縛近似模型與JunPy程序得到很好的三種電阻狀態的模擬關係。研究結果表明,此缺陷可視為帶正電的氧空缺,因此會受到負向電場的吸引,導致 AlO$_x$ 中氧空位遷移,而達到高與低電阻狀態的切換。簡而言之,我們透過雜訊確認了磁穿隧接面中具電阻切換行為的傳輸機制。
摘要(英) We study the low-frequency noise in the ultrathin (1.5 nm) AlOx based magnetic tunnel junction (MTJ) with bipolar resistive switching (RS). From the bias dependence of random telegraph noise (RTN) analysis, we reveal the instant detection of the charge dynamics transport (such as capture and emission event) in the high (HRS) and low resistance states (LRS), they exhibit different localized trap energy and location. We also use the tight-binding model by the JunPy package to confirm the noise information, we found that the simulation I-V curve also has the behavior of RS states. The results show that the oxygen vacancy with a positive charge could be attracted by the polarity of the electric field, resulting in the migration of oxygen vacancy in the AlOx. In short, we study the charge transport of RS in the MTJ by noise analysis.
關鍵字(中) ★ 磁性穿隧接面
★ 雙極電阻開關
★ 氧空缺遷移
★ 低頻雜訊
★ 隨機電報 雜訊
★ 緊束縛近似模型
關鍵字(英) ★ magnetic tunnel junction
★ bipolar resistive switching
★ oxygen vacancy migration
★ low-frequency noise
★ random telegraph noise
★ tight-binding model
論文目次 中文摘要 ................................................................................................... i
Abstract..................................................................................................... ii
Content...................................................................................................... iii
List of Figures............................................................................................ v
Chapter 1. Introduction ......................................................................... 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Memristor . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Tunnel Magnetoresistance . . . . . . . . . . . . . . . . . 6
1.3.1 Electron Tunneling effect . . . . . . . . . . . . . . . . . 7
1.3.2 Julliére’s model . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Oxide-based Resistive Switching . . . . . . . . . . . . . 9
1.4.1 Mechanisms of resistive switching . . . . . . . . . . . . 9
1.5 Motivation and Problems . . . . . . . . . . . . . . . . . 12
Chapter 2. The Theorem of Noise System............................................. 14
2.1 Mathematical methods of noise . . . . . . . . . . . . . . 14
2.1.1 Stochastic process . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Time Average and Ensemble Average . . . . . . . . . . . 15
2.1.3 The Wiener-Khintchine theorem . . . . . . . . . . . . . 17
2.2 Noise in Magnetic Tunnel Junctions . . . . . . . . . . . 17
2.2.1 White Noise . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Random Telegraph Noise . . . . . . . . . . . . . . . . . 19
2.2.3 1/f Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 3. Experimental Methods......................................................... 26
3.1 Sample Fabrication . . . . . . . . . . . . . . . . . . . . 26
3.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Low-frequency voltage noise in circuits . . . . . . . . . . 29
3.2.2 Data Analysis of noise . . . . . . . . . . . . . . . . . . . 32
Chapter 4. Results and Discussion......................................................... 35
4.1 I-V characteristic curves and TMR effect . . . . . . . . . 35
4.1.1 The measurement of IRS . . . . . . . . . . . . . . . . . 35
4.1.2 Resistive Switching states . . . . . . . . . . . . . . . . . 41
iii
4.2 Low-Frequency Noise measurement . . . . . . . . . . . . 45
4.2.1 Bias dependence of Low-Frequency Noise . . . . . . . . . 45
4.2.2 Bias dependence of RTN . . . . . . . . . . . . . . . . . . 48
4.3 Tight-Binding model on JunPy . . . . . . . . . . . . . . 53
4.3.1 Model Setup with FM/I/FM Structure . . . . . . . . . . 53
4.3.2 Simulated I-V curves with IRS, HRS, and LRS . . . . . 54
Chapter 5. Conclusion ........................................................................... 57
Bibliography .............................................................................................. 58
Appendix ................................................................................................... 62
A.1 The history of this research project . . . . . . . . . . . . 62
A.2 The quality of the sample check . . . . . . . . . . . . . . 62
A.3 The noise circuit check . . . . . . . . . . . . . . . . . . . 62
A.4 The LabVIEW program for analyzing 1/f noise . . . . . 64
A.5 The LabVIEW program for separating the two level states
of RTN . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.6 The python program for the bias voltage dependence of
the spectrum plot . . . . . . . . . . . . . . . . . . . . . 65
A.7 The noise power in a resistor . . . . . . . . . . . . . . . 67
A.8 The proof of Fourier transform . . . . . . . . . . . . . . 68
A.9 The proof of Parseval’s theorem . . . . . . . . . . . . . . 68
A.10 The proof of the Wiener-Khintchine theorem . . . . . . . 68
參考文獻 [1] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit
theory, 18(5):507–519, 1971.
[2] P. M. Tedrow and R. Meservey. Spin-dependent tunneling into ferromagnetic nickel.
Phys. Rev. Lett., 26:192–195, Jan 1971.
[3] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant magnetoresistance of
(001)fe/(001)cr magnetic superlattices. Phys. Rev. Lett., 61:2472–2475, Nov 1988.
[4] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn. Enhanced magnetoresistance
in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev.
B, 39:4828–4830, Mar 1989.
[5] Jagadeesh Subbaiah Moodera, Lisa R Kinder, Terrilyn M Wong, and R Meservey.
Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Physical review letters, 74(16):3273, 1995.
[6] TW Hickmott. Low-frequency negative resistance in thin anodic oxide films. Journal
of Applied Physics, 33(9):2669–2682, 1962.
[7] SdQ Liu, NJ Wu, and Alex Ignatiev. Electric-pulse-induced reversible resistance
change effect in magnetoresistive films. Applied Physics Letters, 76(19):2749–2751,
2000.
[8] Jae Sung Lee, Shinbuhm Lee, and Tae Won Noh. Resistive switching phenomena: A
review of statistical physics approaches. Applied Physics Reviews, 2(3):031303, 2015.
[9] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. Memristive devices for
computing. Nature nanotechnology, 8(1):13–24, 2013.
[10] Zhihuan Yang, Qingfeng Zhan, Xiaojian Zhu, Yiwei Liu, Huali Yang, Benlin Hu, Jie
Shang, Liang Pan, Bin Chen, and Run-Wei Li. Tunneling magnetoresistance induced
by controllable formation of co filaments in resistive switching co/ZnO/fe structures.
EPL (Europhysics Letters), 108(5):58004, dec 2014.
[11] Qiang Li, Ting-Ting Shen, Yan-Ling Cao, Kun Zhang, Shi-Shen Yan, Yu-Feng Tian,
Shi-Shou Kang, Ming-Wen Zhao, You-Yong Dai, Yan-Xue Chen, et al. Spin memristive magnetic tunnel junctions with coo-zno nano composite barrier. Scientific
Reports, 4(1):1–5, 2014.
[12] Uwe Bauer, Lide Yao, Aik Jun Tan, Parnika Agrawal, Satoru Emori, Harry L Tuller,
Sebastiaan Van Dijken, and Geoffrey SD Beach. Magneto-ionic control of interfacial
magnetism. Nature materials, 14(2):174–181, 2015.
[13] Qikun Huang, Yanan Dong, Xiaonan Zhao, Jing Wang, Yanxue Chen, Lihui Bai,
Ying Dai, Youyong Dai, Shishen Yan, and Yufeng Tian. Electrical control of perpendicular magnetic anisotropy and spin-orbit torque-induced magnetization switching.
Advanced Electronic Materials, 6(3):1900782, 2020.
[14] Aik Jun Tan, Mantao Huang, Can Onur Avci, Felix Büttner, Maxwell Mann, Wen Hu,
Claudio Mazzoli, Stuart Wilkins, Harry L Tuller, and Geoffrey SD Beach. Magnetoionic control of magnetism using a solid-state proton pump. Nature Materials,
18(1):35–41, 2019.
[15] M Nichterwitz, S Honnali, Maksim Kutuzau, S Guo, J Zehner, Kornelius Nielsch,
and Karin Leistner. Advances in magneto-ionic materials and perspectives for their
application. APL Materials, 9(3):030903, 2021.
[16] Yoshiyuki Fukumoto, Ken-ichi Shimura, Atsushi Kamijo, Shuichi Tahara, and Hiroaki
Yoda. High thermal stability of magnetic tunnel junctions with oxide diffusion barrier
layers. Applied physics letters, 84(2):233–235, 2004.
[17] S Tehrani, B Engel, JM Slaughter, E Chen, M DeHerrera, M Durlam, P Naji, R Whig,
J Janesky, and J Calder. Recent developments in magnetic tunnel junction mram.
IEEE Transactions on magnetics, 36(5):2752–2757, 2000.
[18] Seisuke Nigo, Masato Kubota, Yoshitomo Harada, Taisei Hirayama, Seiichi Kato,
Hideaki Kitazawa, and Giyuu Kido. Conduction band caused by oxygen vacancies in
aluminum oxide for resistance random access memory. Journal of Applied Physics,
112(3):033711, 2012.
[19] Ziyi Wang, Bo Sun, Haibo Ye, Zhiyong Liu, Guanglan Liao, and Tielin Shi. Annealed
alox film with enhanced performance for bipolar resistive switching memory. Applied
Surface Science, 546:149094, 2021.
[20] Ishan Varun, Deepak Bharti, Vivek Raghuwanshi, and Shree Prakash Tiwari. Multitemperature deposition scheme for improved resistive switching behavior of ti/alox/ti
mim structure. Solid State Ionics, 309:86–91, 2017.
[21] Jhen-Yong Hong, Chen-Feng Hung, Kui-Hon Ou Yang, Kuan-Chia Chiu, Dah-Chin
Ling, Wen-Chung Chiang, and Minn-Tsong Lin. Electrically programmable magnetoresistance in alo x-based magnetic tunnel junctions. Scientific Reports, 11(1):1–7,
2021.
[22] Stefano Ambrogio, Simone Balatti, V McCaffrey, D Wang, and Daniele Ielmini.
Impact of low-frequency noise on read distributions of resistive switching memory
(rram). In 2014 IEEE International Electron Devices Meeting, pages 14–4. IEEE,
2014.
[23] L Jiang, ER Nowak, PE Scott, J Johnson, JM Slaughter, JJ Sun, and RW Dave.
Low-frequency magnetic and resistance noise in magnetic tunnel junctions. Physical
Review B, 69(5):054407, 2004.
[24] Daniele Ielmini, Federico Nardi, and Carlo Cagli. Resistance-dependent amplitude
of random telegraph-signal noise in resistive switching memories. Applied Physics
Letters, 96(5):053503, 2010.
[25] Ye Zhang, Huaqiang Wu, Minghao Wu, Ning Deng, Zhiping Yu, Jinyu Zhang, and
He Qian. Random telegraph noise analysis in alox/woy resistive switching memories.
Applied Physics Letters, 104(10):103507, 2014.
[26] Shinhyun Choi, Yuchao Yang, and Wei Lu. Random telegraph noise and resistance
switching analysis of oxide based resistive memory. Nanoscale, 6(1):400–404, 2014.
[27] Jhen-Yong Hong, Chun-Yen Chen, Dah-Chin Ling, Isidoro Martínez, César GonzálezRuano, and Farkhad G. Aliev. Low-frequency 1/f noise characteristics of ultra-thin
alox-based resistive switching memory devices with magneto-resistive responses. Electronics, 10(20), 2021.
[28] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.
The missing memristor found. nature, 453(7191):80–83, 2008.
[29] J Joshua Yang, Matthew D Pickett, Xuema Li, Douglas AA Ohlberg, Duncan R
Stewart, and R Stanley Williams. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology, 3(7):429–433, 2008.
[30] Michel Julliere. Tunneling between ferromagnetic films. Physics letters A, 54(3):225–
226, 1975.
[31] Stefan Slesazeck and Thomas Mikolajick. Nanoscale resistive switching memory devices: a review. Nanotechnology, 30(35):352003, 2019.
[32] Akihito Sawa. Resistive switching in transition metal oxides. Materials today,
11(6):28–36, 2008.
[33] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Advanced
materials, 21(25-26):2632–2663, 2009.
[34] Yuchao Yang, Peng Gao, Siddharth Gaba, Ting Chang, Xiaoqing Pan, and Wei Lu.
Observation of conducting filament growth in nanoscale resistive memories. Nature
communications, 3(1):1–8, 2012.
[35] Jubong Park, Seungjae Jung, Joonmyoung Lee, Wootae Lee, Seonghyun Kim, Jungho
Shin, and Hyunsang Hwang. Resistive switching characteristics of ultra-thin tiox.
Microelectronic engineering, 88(7):1136–1139, 2011.
[36] Sarunas Bagdzevicius, Klaasjan Maas, Michel Boudard, and Monica Burriel.
Interface-type resistive switching in perovskite materials. Journal of Electroceramics,
39(1):157–184, 2017.
[37] Robert Brown F.R.S. Hon. M.R.S.E. & R.I. Acad. V.P.L.S. Xxvii. a brief account
of microscopical observations made in the months of june, july and august 1827, on
the particles contained in the pollen of plants; and on the general existence of active
molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21):161–
173, 1828.
[38] M.J. Kirton and M.J. Uren. Noise in solid-state microstructures: A new perspective
on individual defects, interface states and low-frequency (1/ƒ) noise. Advances in
Physics, 38(4):367–468, 1989.
[39] Y Yamamoto. Fundamentals of noise processes. http://feynman. stanford.
edu/EEAP248. html, 2004.
[40] Farkhad Aliev and Juan Pedro Cascales. Noise in spintronics: from understanding
to manipulation. Jenny Stanford Publishing, 2018.
[41] John Bertrand Johnson. Thermal agitation of electricity in conductors. Physical
review, 32(1):97, 1928.
[42] Harry Nyquist. Thermal agitation of electric charge in conductors. Physical review,
32(1):110, 1928.
[43] Walter Schottky. Über spontane stromschwankungen in verschiedenen elektrizitätsleitern. Annalen der physik, 362(23):541–567, 1918.
[44] John G Simmons. Generalized formula for the electric tunnel effect between similar
electrodes separated by a thin insulating film. Journal of applied physics, 34(6):1793–
1803, 1963.
[45] Takashi Ikuno, Hirotaka Okamoto, Yusuke Sugiyama, Hideyuki Nakano, Fumihiko
Yamada, and Itaru Kamiya. Electron transport properties of si nanosheets: Transition from direct tunneling to fowler-nordheim tunneling. Applied Physics Letters,
99(2):023107, 2011.
[46] Jeremy M. Beebe, BongSoo Kim, J. W. Gadzuk, C. Daniel Frisbie, and James G.
Kushmerick. Transition from direct tunneling to field emission in metal-moleculemetal junctions. Phys. Rev. Lett., 97:026801, Jul 2006.
[47] Kyung Min Kim, Byung Joon Choi, Min Hwan Lee, Gun Hwan Kim, Seul Ji Song,
Jun Yeong Seok, Jeong Ho Yoon, Seungwu Han, and Cheol Seong Hwang. A detailed
understanding of the electronic bipolar resistance switching behavior in pt/tio2/pt
structure. Nanotechnology, 22(25):254010, 2011.
[48] ZQ Lei, GJ Li, William F Egelhoff, PT Lai, and Philip WT Pong. Review of
noise sources in magnetic tunnel junction sensors. IEEE Transactions on Magnetics,
47(3):602–612, 2011.
[49] JM Almeida, P Wisniowski, and PP Freitas. Low-frequency noise in mgo magnetic
tunnel junctions: Hooge’s parameter dependence on bias voltage. IEEE Transactions
on Magnetics, 44(11):2569–2572, 2008.
[50] J Scola, H Polovy, C Fermon, M Pannetier-Lecoeur, G Feng, K Fahy, and JMD Coey.
Noise in mgo barrier magnetic tunnel junctions with cofeb electrodes: Influence of
annealing temperature. Applied physics letters, 90(25):252501, 2007.
[51] Youngsang Kim, Hyunwook Song, Dongwoo Kim, Takhee Lee, and Heejun Jeong.
Noise characteristics of charge tunneling via localized states in metal- molecule- metal
junctions. Acs Nano, 4(8):4426–4430, 2010.
[52] Shimeng Yu, Rakesh Jeyasingh, Yi Wu, and H-S Philip Wong. Characterization of
low-frequency noise in the resistive switching of transition metal oxide hfo 2. Physical
Review B, 85(4):045324, 2012.
[53] Junpy: https://labstt.phy.ncu.edu.tw/junpy.
[54] Bao-Huei Huang, Chia-Chia Chao, and Yu-Hui Tang. Thickness dependence of spin
torque effect in fe/mgo/fe magnetic tunnel junction: Implementation of divide-andconquer with first-principles calculation. AIP Advances, 11(1):015036, 2021.
[55] Y-H Tang and B-H Huang. Manipulation of giant field-like spin torque in amineended single-molecule magnetic junctions. The Journal of Physical Chemistry C,
122(35):20500–20505, 2018.
指導教授 唐毓慧 洪振湧(Yu-Hui Tang Jhen-Yong Hong) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明