博碩士論文 109222022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.137.172.68
姓名 林維恩(Wei-En Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Characterizing single-qubit gate fidelity on superconducting qubits
(超導電路單量子位元邏輯閘效度之表徵)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ 工程化超導電路上三維腔量子電動力學系統
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們在超導電路系統研究原子與光的相互作用。在我們實驗室,我們製造量子超導電路,例如在一維傳輸線共振器嵌入一個小芯片的transmon 量子位元。為了獲取量子位元之系統的特性,列如共振器頻率、量子位元躍遷頻率和量子位元與共振器之耦合強度,我們藉由量子非波壞性(QND) 讀取,在強色散的區域下進行頻譜實驗。基於頻譜實驗的結果,我們利用微波脈衝序列進行單一量子位元狀態之控制實驗。最近,我們專注於單量子位元邏輯閘效度的研究。我們採取兩種方法估計邏輯閘的效度:量子過程斷層掃描和隨機基準分析。當邏輯閘的長度增加,由於量子位元的去同調性,我們發現從量子過程斷層掃描得到的效度會降低。對於20 微秒之X 跟Y 閘,藉由量子過程斷層掃描的方法,我們得到了平均邏輯閘效度約為88.58% 跟87.16%;利用隨機基準分析的方法,我們估計的平均邏輯閘效度約為97.49% 跟97.38%。由於量子過程斷層掃描的方法多估計了狀態準備以及測量上的錯誤,因此它的平均邏輯閘效度比隨機基準分析估計的還要小。
摘要(英) In our lab, we fabricate the quantum superconducting circuit such as the single transmon qubit embedded in a one-dimensional transmission line resonator on the small chip.
To obtain the characteristics of superconducting qubit system, such as the resonant frequency of a resonator, qubit transition frequency, and qubit-resonator coupling strength,
we perform spectroscopy experiments in strong dispersive regime. Based on the characteristics of the system, we carry out various qubit state control experiments with microwave
pulse sequences. Recently, we focus on investigations of single qubit gate fidelity. We estimate gate fidelity based on two metrics: quantum process tomography (QPT), and randomized benchmarking (RB). When the gate length increases, we find that the fidelity from the QPT decrease due to the qubit decoherence effect. For 20 ns X and Y gates, we obtain the average gate fidelity 88.58% and 87.16% by the QPT ; we also estimate the average gate fidelity 97.49% and 97.38% by the RB. The fidelity via the QPT is smaller than that of the RB due to the over-estimated errors from the state preparation and measurement errors.
關鍵字(中) ★ transmon 量子位元
★ 量子非破獲性讀取
★ 量子邏輯閘效度
★ 量子過程斷層掃描
★ 隨機基準分析
關鍵字(英) ★ circuit quantum electrodynamics
★ transmon qubit
★ quantum non-demolition readout
★ gate fidelity
★ quantum process tomography
★ randomized benchmarking
論文目次 摘要ix
Abstract xi
Contents xiii
1 Introduction 1
1.1 Cavity Quantum Electrodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Circuit Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Cavity quantum electrodynamics 3
2.1 The Jaynes-Cummings model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Strong coupling limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Dispersive limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 The coherent drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Superconducting qubit and circuit QED 15
3.1 The quantization of the transmission line resonator . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Cooper pair box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Transmon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Charge dispersion of transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 The Josephson oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Transmon coupling with coplanar waveguide resonator . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 The generalized Jaynes-Cummings Hamiltonian. . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Dispersive regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Simulation of qubit spectroscopy 35
4.1 Qubit decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.1 Density matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Bloch Redfield model for decoherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 One tone spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Flux-dependent spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Vacuum Rabi supersplitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Cavity power dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Two tone spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Dispersive readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Overlapped CW spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Separated pulse spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 Simulation of quantum gate operation 65
5.1 Optical Bloch equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Rabi oscillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Time and power Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Measurements for decoherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.1 T1 relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Ramsey experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.3 Spin echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Gate fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Quantum process tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6 Experimental setup and results 99
6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.1 Superconducting circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.1.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1.3 Homodyne demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.1 One tone spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Two tone spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Rabi oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.4 Power and time Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.5 T1 relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.6 Ramsey fringe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.7 Spin echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.8 Quantum process tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.9 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7 Conclusion and future work 121
bibliography 123
參考文獻 [1] M. Scheucher, “Toward a quantum switch for light,” Ph.D. dissertation, 2013.
[2] D. I. Schuster, Circuit quantum electrodynamics. Yale University, 2007.
[3] A. Blais, J. Gambetta, A. Wallraff, et al., “Quantum-information processing with circuit
quantum electrodynamics,” Physical Review A, vol. 75, no. 3, p. 032 329, 2007.
[4] D. Arweiler, “Multi-squid josephson parametric amplifiers,” 2018.
[5] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum
electrodynamics for superconducting electrical circuits: An architecture for quantum
computation,” Physical Review A, vol. 69, no. 6, p. 062 320, 2004.
[6] J. Koch, M. Y. Terri, J. Gambetta, et al., “Charge-insensitive qubit design derived from
the cooper pair box,” Physical Review A, vol. 76, no. 4, p. 042 319, 2007.
[7] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A
quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6,
no. 2, p. 021 318, 2019.
[8] C. A. Brasil, F. F. Fanchini, and R. d. J. Napolitano, “A simple derivation of the lindblad
equation,” Revista Brasileira de Ensino de Fı́sica, vol. 35, no. 1, pp. 01–09, 2013.
[9] L. S. Bishop, J. Chow, J. Koch, et al., “Nonlinear response of the vacuum rabi resonance,”
Nature Physics, vol. 5, no. 2, pp. 105–109, 2009.
[10] P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by intense
radiation fields,” Physics Letters A, vol. 73, no. 2, pp. 97–99, 1979.
[11] L. S. Bishop, E. Ginossar, and S. Girvin, “Response of the strongly driven jaynes-cummings
oscillator,” Physical review letters, vol. 105, no. 10, p. 100 505, 2010.
[12] M. Reed, L. DiCarlo, B. Johnson, et al., “High-fidelity readout in circuit quantum electrodynamics
using the jaynes-cummings nonlinearity,” Physical review letters, vol. 105,
no. 17, p. 173 601, 2010.
[13] J. Gambetta, A. Blais, D. I. Schuster, et al., “Qubit-photon interactions in a cavity:
Measurement-induced dephasing and number splitting,” Physical Review A, vol. 74, no. 4,
p. 042 318, 2006.
[14] D. Schuster, A. A. Houck, J. Schreier, et al., “Resolving photon number states in a superconducting
circuit,” Nature, vol. 445, no. 7127, pp. 515–518, 2007.
[15] A. Abragam, The principles of nuclear magnetism, 32. Oxford university press, 1961.
[16] K. Júlı́usson, “Quantum zeno dynamics in 3d circuit-qed,” Ph.D. dissertation, Université
Pierre et Marie Curie-Paris VI, 2016.
[17] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the
dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–
2467, 1997.
[18] J. Chow, J. M. Gambetta, L. Tornberg, et al., “Randomized benchmarking and process
tomography for gate errors in a solid-state qubit,” Physical review letters, vol. 102, no. 9,
p. 090 502, 2009.
[19] M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical
operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, 2002.
[20] J. L. O’Brien, G. Pryde, A. Gilchrist, et al., “Quantum process tomography of a controllednot
gate,” Physical review letters, vol. 93, no. 8, p. 080 502, 2004.
[21] M. D. Bowdrey, D. K. Oi, A. J. Short, K. Banaszek, and J. A. Jones, “Fidelity of single
qubit maps,” Physics Letters A, vol. 294, no. 5-6, pp. 258–260, Mar. 2002.
[22] M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet
fraction, and quasidistillation,” Physical Review A, vol. 60, no. 3, p. 1888, 1999.
[23] M. Laforest, “Error characterization and quantum control benchmarking in liquid state
nmr using quantum information processing techniques,” 2008.
[24] J. Emerson, R. Alicki, and K. Życzkowski, “Scalable noise estimation with random unitary
operators,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 7, no. 10, S347,
2005.
[25] E. Magesan, “Characterizing noise in quantum systems,” 2012.
[26] E. Magesan, J. M. Gambetta, B. R. Johnson, et al., “Efficient measurement of quantum
gate error by interleaved randomized benchmarking,” Physical review letters, vol. 109,
no. 8, p. 080 505, 2012.
[27] E. Magesan, J. Gambetta, and J. Emerson, “Robust randomized benchmarking of quantum
processes,” arXiv preprint arXiv:1009.3639,
指導教授 陳永富(Yung-Fu Chen) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明