博碩士論文 109222027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.148.107.131
姓名 朱峻成(Chun-Cheng Chu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 在雷射尾流場加速器中利用震波產生單能電子束
(Generation of monoenergetic electron beam by shock front in Laser Wakefield Accelerator)
相關論文
★ 優化雷射電漿加速器衝擊波注入電子品質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相 對 於 傳 統 的 直 線 電 子 加 速 器 , 雷 射 尾 波 場 加 速 器 (Laser Wakefield
Accelerator)具有更高的加速梯度,甚至可以到達每公厘數百 MeV。如果能克服
一些挑戰如:穩定度不夠高、電子能散不夠低、發射度不夠小,它將是一個良好
的桌上型自由電子雷射的電子源。
當高強度雷射打在氣體靶材上,氣體會被游離成電子和離子,這些電子會被
雷射的有質動力推向外側,再被原本的離子吸引回來,這樣會在雷射後面形成一
個離子腔的結構,也稱作「泡泡(bubble)」,當電子進入泡泡中,便有機會被加速,
而控制電子進入加速場的方式稱為注入機制,而注入法會對產生的電子表現有很
大的影響。
我們使用中央大學強場物理實驗室的高功率飛秒雷射,我們在實驗室中進行
了三種不同注入法的雷射尾波場加速實驗:第一種是游離注入法,利用高原子序
的氣體如氮分子的內外層電子的游離能差距,因為內層電子游離的位置更接近雷
射中央,其有較大的機會注入,利用其容易注入的特性,在實驗上可以更快幫助
我們找到實驗條件如雷射聚焦位置和雷射的群延遲色散(group delay dispersion)。
第二種是自注入法,當雷射超過臨界強度時,雷射尾波變得非線性,便會導致波
崩,游離的電子軌跡變得不穩定,隨時都有能自己進入加速區而注入。第三種是
震波前注入法,在氣體噴嘴上方插入刀片後,噴氣時產生的震波前是一個短距離、
高梯度的密度分布,當雷射經過這個震波前時,泡泡會瞬間被拉長,使原本在泡
泡後面的電子被注入,因為注入發生的時間很短,產生的電子能量會很集中,所
以震波前注入法是我們實驗的主要目地。
最後我們成功藉由震波前注入法產生單能的電子,其鋒值能量到達 125 MeV,
能散卻只有 7.5 %,雖然電子電量僅有 5.2 pC,其發散度也只有 2.5 mrad,我們
想進一步優化氣體的噴嘴和雷射的品質,來產生更穩定的單能電子。
摘要(英) Compare to traditional linear electron accelerator, Laser Wakefield Accelera-
tor (LWFA) have higher acceleration gradient which is about hundreds of MeV
per millimeter. If we can overcome the challenge of high stability, low energy
spread, and low emittance, it is a good electron source to construct laboratory-
scale Free Electron laser (FEL).
The wakefield is generated by the ionization of the gas by a high intensity
laser. The ionized electrons are expelled by the ponderomotive force and then
attracted by the ions. Thus, there will form an ion cavity which is called a bub-
ble behind the laser. The bubble can trap electrons and accelerate them, so the
way to make the electrons move into the bubble is called injection method. We
conducted the experiment of LWFA by three different injection methods: ioniza-
tion injection, self-injection, and shock-front injection with 100 TW laser system
in NCU. The ionization injection is a simple way to generate electron beam by
a gas target with high atomic number. The electrons at inner shell are only ion-
ized at the center of the laser beam, so these electrons are easy to be injected.
This property can help us to find the preliminary shooting parameters, such like
laser focus position and group delay dispersion (GDD).
Self-injection occurs when the laser intensity is high enough, the plasma wave
may become broken. Thus, the electrons may be injected by itself throughout the
plasma channel. The shock-front injection happens when the laser pulse passes
through a shock front with high density gradient in micrometer scale. The sud-
denly dropped density makes the bubble length increase, so the electrons at the
back of the bubble may be injected. If the self-injection doesn’t occur, the in-
jection volume is only near the shock front. As a result, the energy spread is
the smallest among these three injection meachanisms although the aceleration
length is reduced by the shock front position.
In our results, the monoenergetic electron beams with the peak energy of
125 ± 12.2 MeV, FWHM energy spread are only 7.5 ± 1.68%, charge of 5.2 ±
2.2 pC, FWHM divergence of 2.5 ± 0.8 mrad, are generated by the shock-front
injection. However, the probability of these monoenergetic shots is only 15 %.
The stability of the electron means should be further improved by improving
the gas jet design and the laser quality.
關鍵字(中) ★ 雷射尾流場加速器
★ 震波前注入法
★ 自注入法
關鍵字(英) ★ Laser Wakefield acceleration
★ shock-front injection
★ self-injection
論文目次 Contents
1 Introduction 1
1.1 Electron accelerator: traditional RF cavity vs Laser wakefield Accelerator (LWFA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Laser wakefield generation . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Self-focusing and self-guiding . . . . . . . . . . . . . . . . 6
1.2.2 Self-modulation . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Injection mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Ionization injection . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Self-injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Shock-front injection . . . . . . . . . . . . . . . . . . . . . . 10
2 Experimental setup 13
2.1 NCU 100 TW laser system . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Laser wakefield experiment setup . . . . . . . . . . . . . . . . . . 15
2.2.1 Main laser and alignment . . . . . . . . . . . . . . . . . . . 15
2.2.2 Shadowgraphy . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Shock-front setup and stages . . . . . . . . . . . . . . . . . 20
2.2.4 Gas jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Electron diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Electron pointing observation . . . . . . . . . . . . . . . . . 25
2.3.2 Electron spectrometer . . . . . . . . . . . . . . . . . . . . . 27
2.4 Charge calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Results and analysis 31
ix3.1 Laser condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Focus analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Grating and GDD . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Pointing and spectrum . . . . . . . . . . . . . . . . . . . . . 36
3.3 Ionization injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Self-injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Shock-front injeciton . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Injection comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Procedure to get monoenergetic electron . . . . . . . . . . . . . . . 48
4 Conclusion 57
Bibliography 59
A Storing path of the figures 63
B Nozzle design 75
參考文獻 [1] Lucy Whitmore et al. “Focused VHEE (very high energy electron) beams
and dose delivery for radiotherapy applications”. In: Scientific Reports 11.1
(2021), p. 14013.
[2] Kristoffer Svendsen et al. “A focused very high energy electron beam
for fractionated stereotactic radiotherapy”. In: Scientific reports 11.1 (2021),
p. 5844.
[3] Emilio A Nanni et al. “Terahertz-driven linear electron acceleration”. In:
Nature communications 6.1 (2015), p. 8486.
[4] TO Raubenheimer et al. “The LCLS-II-HE, a high energy upgrade of the
LCLS-II”. In: 60th ICFA Advanced Beam Dynamics Workshop on Future Light
Sources. 2018, pp. 6–11.
[5] Toshiki Tajima and John M Dawson. “Laser electron accelerator”. In: Physical review letters 43.4 (1979), p. 267.
[6] D Gordon et al. “Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave”. In: Physical
review letters 80.10 (1998), p. 2133.
[7] Hyung Taek Kim et al. “Stable multi-GeV electron accelerator driven
by waveform-controlled PW laser pulses”. In: Scientific reports 7.1 (2017),
p. 10203.
[8] Paul Gibbon. Short pulse laser interactions with matter: an introduction. World
Scientific, 2005.
[9] Eric Esarey et al. “Self-focusing and guiding of short laser pulses in ionizing gases and plasmas”. In: IEEE journal of quantum electronics 33.11 (1997),
pp. 1879–1914.
[10] JE Ralph et al. “Self-guiding of ultrashort, relativistically intense laser
pulses through underdense plasmas in the blowout regime”. In: Physical
review letters 102.17 (2009), p. 175003.
[11] Robert W Boyd and B Masters. “Nonlinear Optics 3rd edn (New York:
Academic)”. In: (2008).
[12] WB Mori. “The physics of the nonlinear optics of plasmas at relativistic
intensities for short-pulse lasers”. In: IEEE Journal of Quantum Electronics
33.11 (1997), pp. 1942–1953.
59[13] Arthur Pak et al. “Injection and trapping of tunnel-ionized electrons into
laser-produced wakes”. In: Physical review letters 104.2 (2010), p. 025003.
[14] Wolfgang Schulz, Urs Eppelt, and Reinhart Poprawe. “Review on laser
drilling I. Fundamentals, modeling, and simulation”. In: Journal of laser
applications 25.1 (2013).
[15] JS Liu et al. “All-optical cascaded laser wakefield accelerator using
ionization-induced injection”. In: Physical review letters 107.3 (2011),
p. 035001.
[16] Eric Esarey, Carl B Schroeder, and Wim P Leemans. “Physics of laserdriven plasma-based electron accelerators”. In: Reviews of modern physics
81.3 (2009), p. 1229.
[17] Stuart PD Mangles et al. “Self-injection threshold in self-guided laser
wakefield accelerators”. In: Physical Review Special Topics-Accelerators and
Beams 15.1 (2012), p. 011302.
[18] Jérôme Faure et al. “A laser–plasma accelerator producing monoenergetic
electron beams”. In: Nature 431.7008 (2004), pp. 541–544.
[19] Karl Schmid et al. “Density-transition based electron injector for
laser driven wakefield accelerators”. In: Physical Review Special TopicsAccelerators and Beams 13.9 (2010), p. 091301.
[20] Alexander Buck et al. “Shock-front injector for high-quality laser-plasma
acceleration”. In: Physical review letters 110.18 (2013), p. 185006.
[21] Wentao Wang et al. “Free-electron lasing at 27 nanometres based on a laser
wakefield accelerator”. In: Nature 595.7868 (2021), pp. 516–520.
[22] Donna Strickland and Gerard Mourou. “Compression of amplified
chirped optical pulses”. In: Optics communications 55.6 (1985), pp. 447–449.
[23] Karl Schmid. “Supersonic Micro-Jets And Their Application to Few-Cycle
Laser-Driven Electron Acceleration”. PhD thesis. lmu, 2009.
[24] Tomonao Hosokai et al. “Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser
pulse”. In: Physical review E 67.3 (2003), p. 036407.
[25] KK Swanson et al. “Control of tunable, monoenergetic laser-plasmaaccelerated electron beams using a shock-induced density downramp injector”. In: Physical Review Accelerators and Beams 20.5 (2017), p. 051301.
[26] Eric Esarey and Mark Pilloff. “Trapping and acceleration in nonlinear
plasma waves”. In: Physics of Plasmas 2.5 (1995), pp. 1432–1436.
[27] Hai-En Tsai et al. “Control of quasi-monoenergetic electron beams from
laser-plasma accelerators with adjustable shock density profile”. In:
Physics of Plasmas 25.4 (2018).
60[28] CGR Geddes et al. “Plasma-density-gradient injection of low absolutemomentum-spread electron bunches”. In: Physical review letters 100.21
(2008), p. 215004.
[29] A Grigoriadis et al. “The role of laser chirp in relativistic electron acceleration using multi-electron gas targets”. In: Plasma Physics and Controlled
Fusion 65.4 (2023), p. 044001.
[30] Fenxiang Wu et al. “Performance improvement of a 200TW/1Hz Ti: sapphire laser for laser wakefield electron accelerator”. In: Optics & Laser Technology 131 (2020), p. 106453.
[31] WP Leemans et al. “Bella laser and operations”. In: Proceedings of PAC.
2013, pp. 1097–1100.
[32] Jae Hee Sung et al. “0.1 Hz 1.0 PW Ti: sapphire laser”. In: Optics letters
35.18 (2010), pp. 3021–3023.
指導教授 周紹暐(Shao-Wei Chou) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明