博碩士論文 109222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.229.63.215
姓名 何昕玫(Hsin-Mei Ho)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Strain-Induced Magnetic-Nonmagnetic Transition in PtSe2 Nanoribbon: A First-Principles Study)
相關論文
★ Stretching effect on the spin transport properties of single molecular junctions: A first-principle study★ First-principles study in wurtzite InN bulk, thin film, and nanobelt
★ The interfacial effect on spin-transfer torque in single molecular magnetic junctions: A first-principles study★ Spin transport calculation for thiol-ended single-molecule magnetic junction
★ Combined first-principles and tight-binding Hamiltonian study of Fe-MgO-Fe magnetic tunnel junctions★ Anchoring Effect on Spin Transport in Amine-Ended Single-Molecule Magnetic Junctions: A First-Principles Study
★ Analytic derivation for spin-transfer properties in magnetic tunnel junctions★ Simulation for Cu-platted Front Side Metallization of Si-based Solar Cell
★ 利用單能階緊密鍵結模型計算磁性穿隧接合的自旋傳輸特性★ Electronic and Spin Transport Properties of Fe/MgO/Fe Magnetic Tunnel Junction: Combined First-Principles Calculation and TB-NEGF Method
★ First-principles study in structural and elec-tronic properties of FeBaTiO3Fe multiferroic tunneling junction★ Effect of contact geometry on the spin transfer calculation in amine-ended single-molecule magnetic junctions
★ Spin Transport Properties in Magnetic Heterojunctions: Analytical derivation in Green’s function and Multi-reflection process★ Modification of Distributional Exact Diagonalization Approach for Single Impurity Anderson Model
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 低維度材料在理論及實驗方面已經被廣泛的研究。在石墨烯與過渡金屬二硫屬化物等二維材料中的磁性研究正迅速的成長。在材料中透過邊界、原子空缺、晶界等晶體缺陷所創造的磁性為數據儲存與磁性感應等領域帶來革命性的變化。
在本論文中,我們以密度泛函理論為基礎的第一原理計算研究二硒化鉑鋸齒狀奈米帶的電子特性及磁性。奈米帶的內部為非磁性的半導體,磁性則由分布在 鋸齒狀邊界的一維磁通道及金屬通道所主導,其中鉑 d 軌道與硒 p 軌道之耦合則扮演重要的角色。針對垂直於邊界壓縮所引發的磁性到非磁性的轉變,我們延伸安德森雜質模型並透過參數擬合發現:以邊界上金屬通道作為媒介,磁性通道的交換分裂隨著結構改變而縮小直至磁性的消失。相較於二硒化鉑,二硒化鉿鋸齒狀奈米帶的磁性並不會隨著結構拉伸或壓縮而有明顯改變。此截然不同的結果為顯著的離子鍵特性與低佔據比例的鉿 d 軌道所導致。這些發現說明過渡金屬在一維磁性過渡金屬二硫屬化物的重要角色。二硒化鉑的獨特性使其極具潛力成為自旋電子元件中能有效開關的重要材料。
摘要(英) Low-dimensional material has been a long-time subject of both theoretical and experimental aspects. Beyond the intrinsic magnetic solids, searching for magnetism in graphene, transition metal dichalcogenides (TMDs), and other two-dimensional materials has continued apace. Realized either by introducing edges, vacancies, or grain boundaries, magnetism in defect-engineered materials has revolutionized important technologies such as data storage and magnetic sensing.
Here the density functional theory (DFT) calculations are employed to investigate the electronic properties and the sizable magnetization in zigzag-edged PtSe2 (zz-PtSe2) nanoribbon. Quasi one-dimensional magnetic and metallic channels are found at two edges of the nanoribbon, which are well separated by nonmagnetic and semiconducting states at inner atoms. We discover that the underlying mechanism is the orbital hybridization between edge Pt-d and Se-p orbitals along the edges. Remarkably, our first-principles calculations reveal that the zz-PtSe2 nanoribbon undergoes a magnetic-nonmagnetic transition induced by a compressive strain about -2% perpendicular to the zigzag edges. By fitting the DFT results, the model simulation based on the extension of Anderson’s single impurity model suggests that the change of the edge structures are responsible for the sudden disappearance of the magnetization. The observed magnetic switching originates from the reduction in the exchange splitting of the localized magnetic channels along the edges mediated by metallic backgrounds. In sharp contrast, the magnetization of the zigzag-edged HfSe2 nanoribbon is well preserved under strain, as a consequence of the robust ionicity Hf-Se bond and the low d-band occupancy of the edge Hf. Such finding highlights the role of the transition metal in TMD-based one-dimensional magnets. The uniqueness of PtSe2 provides a promising direction for effective mechanical switching and further application in spintronics devices.
關鍵字(中) ★ 過渡金屬二硫屬化物
★ 第一原理
★ 奈米帶
★ 磁性
★ 應變
關鍵字(英) ★ transition metal dichalcogenides
★ first-principles
★ nanoribbon
★ magnetism
★ strain
論文目次 Chapter 1 Introduction ...................... 1
Chapter 2 Theory ...................... 6
2.1 Density Functional Theory ...................... 6
2.1.1 Born-Oppenheimer Approximation ...................... 6
2.1.2 Hatree-Fock Approximation ...................... 7
2.1.3 Hohenberg-Kohn Theorem ...................... 8
2.1.4 Kohn-Sham Energy Functional ...................... 8
2.1.5 Exchange-Correlation Energy Functionals ...................... 10
2.2 First-Principles Calculation Method ...................... 10
2.2.1 Bloch Theorem and Plane Wave Basis ...................... 11
2.2.2 Pseudopotential Approximation ...................... 11
2.3 Crystal Field Theory ...................... 12
Chapter 3 Computational Details ...................... 15
3.1 Structure of Zigzag-Edged PtSe2 Nanoribbon ...................... 15
3.2 Structural and Electronic Calculations ...................... 16
Chapter 4 Results and Discussion ...................... 18
4.1 Intrinsic Magnetization of the zz-PtSe2 Nanoribbon ...................... 18
4.1.1 PtSe2 Monolayer: Nonmagnetic Semiconductor ...................... 18
4.1.2 Quasi-1D Magnetic Channels at Zigzag Edges ...................... 19
4.1.3 Hydrogen-Passivated Edges ................... 21
4.1.4 Spin Configurations ....................... 22
4.2 Strain Effect on the zz-PtSe2 Nanoribbon ................ 24
4.2.1 Abrupt Magnetic-Nonmagnetic Transition ...................... 24
4.2.2 Model Simulation ........................ 25
4.3 Robust Magnetization of the zz-HfSe2 Nanoribbon ...................... 29
Chapter 5 Conclusion.......................33
Appendix ...................... 35
References ...................... 36
參考文獻 [1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics, 81(1):109– 162, January 2009.
[2] Young-WooSon,MarvinL.Cohen,andStevenG.Louie.Energygapsingraphene nanoribbons. Physical Review Letters, 97(21), November 2006.
[3] Katsunori Wakabayashi, Ken ichi Sasaki, Takeshi Nakanishi, and Toshiaki Enoki. Electronic states of graphene nanoribbons and analytical solutions. Science and Technology of Advanced Materials, 11(5):054504, October 2010.
[4] Toshiaki Enoki. Role of edges in the electronic and magnetic structures of nanographene. Physica Scripta, T146:014008, January 2012.
[5] Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. NATURE CHEMISTRY, 5(4):263–275, APR 2013.
[6] Alexander V. Kolobov and Junji Tominaga. Two-Dimensional Transition-Metal Dichalcogenides. Springer International Publishing, 2016.
[7] Miklos Kertesz and Roald Hoffmann. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. Journal of the American Chemical Society, 106(12):3453–3460, June 1984.
[8] Diego Pasquier and Oleg V Yazyev. Crystal field, ligand field, and interorbital effects in two-dimensional transition metal dichalcogenides across the periodic table. 2D Materials, 6(2):025015, February 2019.
[9] Icuk Setiyawati, K.-R. Chiang, H.-M. Ho, and Y.-H. Tang. Distinct electronic and transport properties between 1T-HfSe2 and 1T-PtSe2. Chinese Journal of Physics, 62:151–160, December 2019.
[10] Wonbong Choi, Nitin Choudhary, Gang Hee Han, Juhong Park, Deji Akinwande, and Young Hee Lee. Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 20(3):116–130, April 2017.
[11] J.A. Wilson and A.D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 18(73):193–335, May 1969.
[12] Hui Pan and Yong-Wei Zhang. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. The Journal of Physical Chemistry C, 116(21):11752–11757, May 2012.
[13] Wei Xu, Shiming Yan, and Wen Qiao. Magnetism in monolayer 1T-MoS2 and 1T-MoS2H tuned by strain. RSC Advances, 8(15):8435–8441, 2018.
[14] T. Eknapakul, I. Fongkaew, S. Siriroj, W. Jindata, S. Chaiyachad, S.-K. Mo, S. Thakur, L. Petaccia, H. Takagi, S. Limpijumnong, and W. Meevasana. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation. Physical Review B, 97(20), May 2018.
[15] YajingSun,DongWang,andZhigangShuai.Indirect-to-directbandgapcrossover in few-layer transition metal dichalcogenides: A theoretical prediction. The Journal of Physical Chemistry C, 120(38):21866–21870, September 2016.
[16] Sujay B. Desai, Gyungseon Seol, Jeong Seuk Kang, Hui Fang, Corsin Battaglia, Rehan Kapadia, Joel W. Ager, Jing Guo, and Ali Javey. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Letters, 14(8):4592–4597, July 2014.
[17] Bevin Huang, Genevieve Clark, Efre ́n Navarro-Moratalla, Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong, Emma Schmidgall, Michael A. McGuire, David H. Cobden, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, and Xiaodong Xu. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature, 546(7657):270–273, June 2017.
[18] Kin Fai Mak, Jie Shan, and Daniel C. Ralph. Probing and controlling magnetic states in 2d layered magnetic materials. Nature Reviews Physics, 1(11):646–661, September 2019.
[19] Yandong Ma, Ying Dai, Meng Guo, Chengwang Niu, Yingtao Zhu, and Baibiao Huang. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano, 6(2):1695– 1701, 2012.
[20] Georgy V. Pushkarev, Vladimir G. Mazurenko, Vladimir V. Mazurenko, and Danil W. Boukhvalov. Structural phase transitions in VSe2: energetics, electronic structure and magnetism. Physical Chemistry Chemical Physics, 21(40):22647– 22653, 2019.
[21] Mahsa Abdollahi and Meysam Bagheri Tagani. Tuning intrinsic ferromagnetic and anisotropic properties of the janus VSeS monolayer. Journal of Materials Chemistry C, 8(38):13286–13296, 2020.
[22] Shan Liu, Heyu Zhu, Ziran Liu, and Guanghui Zhou. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2. Physics Letters A, 382(11):776–780, March 2018.
[23] Ruifeng Qi, Shanling Wang, Minxiang Wang, Wentao Liu, Zhihui Yan, Xiaofeng Bi, and Qingsong Huang. Towards well-defined MoS2 nanoribbons on a large scale. Chemical Communications, 53(70):9757–9760, 2017.
[24] Ahmet Avsar, Alberto Ciarrocchi, Michele Pizzochero, Dmitrii Unuchek, Oleg V. Yazyev, and Andras Kis. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nature Nanotechnology, 14(7):674–678, June 2019.
[25] Priyanka Manchanda, Pankaj Kumar, and Pratibha Dev. Defect-induced 4p- magnetism in layered platinum diselenide. Physical Review B, 103(14), April 2021.
[26] JunGe,TianchuangLuo,ZuzhangLin,JianpingShi,YanzhaoLiu,PinyuanWang, Yanfeng Zhang, Wenhui Duan, and Jian Wang. Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Advanced Materials, 33(4):2005465, December 2020.
[27] Wei Zhang, Hai Tao Guo, Jing Jiang, Qiu Chen Tao, Xiao Jiao Song, Hao Li, and Jie Huang. Magnetism and magnetocrystalline anisotropy in single-layer PtSe2: Interplay between strain and vacancy. Journal of Applied Physics, 120(1):013904, July 2016.
[28] Ahmet Avsar, Cheol-Yeon Cheon, Michele Pizzochero, Mukesh Tripathi, Alberto Ciarrocchi, Oleg V. Yazyev, and Andras Kis. Probing magnetism in atomically thin semiconducting PtSe2. Nature Communications, 11(1), September 2020.
[29] Zhuhua Zhang, Xiaolong Zou, Vincent H. Crespi, and Boris I. Yakobson. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano, 7(12):10475–10481, November 2013.
[30] Shiming Yan, Wen Qiao, Xueming He, Xiaobing Guo, Li Xi, Wei Zhong, and Youwei Du. Enhancement of magnetism by structural phase transition in MoS2. Applied Physics Letters, 106(1):012408, January 2015.
[31] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der Physik, 389:457–484, 1927.
[32] D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24(1):89–110, 1928.
[33] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864– B871, Nov 1964.
[34] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.
[35] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671–6687, Sep 1992.
[36] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.
[37] Karl W Boeer and Udo W Pohl. Semiconductor Physics. Semiconductor Physics. Springer International Publishing, Cham, Switzerland, 1 edition, March 2018.
[38] P. E. Blo ̈chl. Projector augmented-wave method. Phys. Rev. B, 50:17953–17979, Dec 1994.
[39] Cheng Gong, Hengji Zhang, Weihua Wang, Luigi Colombo, Robert M. Wallace, and Kyeongjae Cho. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters, 103(5):053513, July 2013.
[40] Gary L Miessler, Paul J Fischer, and Donald A Tarr. Inorganic Chemistry. Pearson, Upper Saddle River, NJ, 5 edition, January 2013.
[41] Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6):1272–1276, 2011.
[42] G. Kresse and J. Furthmu ̈ller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996.
[43] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59:1758–1775, Jan 1999.
[44] Jeremy Taylor, Hong Guo, and Jian Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63:245407, Jun 2001.
[45] Derek Waldron, Lei Liu, and Hong Guo. Ab initio simulation of magnetic tunnel junctions. Nanotechnology, 18(42):424026, sep 2007.
[46] E. David and R. Lide. CRC Handbook of Chemistry and Physics. CRC press, 2021.
[47] P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 124:41–53, Oct 1961.
[48] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.9.0.1592791 (R2020b) Update 5, 2020.
指導教授 唐毓慧(Yu-Hui Tang) 審核日期 2022-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明