博碩士論文 109222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.221.53.209
姓名 周季賢(Chi-Hsien Chou)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 建造準相位匹配高階諧波產生的拍波脈衝串
★ 相位匹配之極紫外光高階諧波產生★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 超短極紫外線脈衝之單發式波形強度量測★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件
★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速★ 雷射電漿中無碰撞激震波的全域與局域量測
★ 極紫外光與近紅外光在電漿中四波混頻的前期實驗★ 高階諧波相位匹配條件的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 要產生短波長的高相干性光源,由雷射和氣體作用產生的高階諧波是一種有效的方法。要提升高階諧波輸出階數,突破傳統相位匹配截止能量,使用離子作為交互作用介質是一種可行的方式。在這份論文中,我們成功達成這個目標,使用氬氣離子將輸出波長推進至 17 nm,超過傳統相位匹配截止能量所對應的 27.6 nm。我們也對此高階諧波產生過程中的相位匹配條件進行了完整的測量,其結果能輔助未來達成高效率之相位匹配高階諧波產生。
摘要(英) To construct a short-wavelength coherent light source, high-harmonic generation from the interaction of lasers and gases is an effective method. To increase the output photon energy beyond the traditional phase-matching cutoff energy, using ions as the interaction medium is a promising way. In this thesis, we succeeded in achieving this goal by using argon ions as the interacting medium to push the output wavelength to 17 nm, beyond 27.6 nm, corresponding to its conventional phase-matching cutoff energy. We have also measured the complete phase-matching conditions of the generation process. The results can assist in achieving effcient phase-matched high-harmonic generation in the future.
關鍵字(中) ★ 高階諧波產生
★ 極紫外光
★ 截止能量
★ 相位匹配
★ 內在偶極相位變化
關鍵字(英) ★ High-Harmonic Generation
★ Extreme Ultraviolet
★ Cutoff Energy
★ Phase Matching
★ Intrinsic Dipole Phase Variation
論文目次 摘要ix
Abstract xi
Dedication xiii
Contents xviii
List of Figures xix
List of Figures xxviii
List of Tables xxix
List of Tables xxx
Explanation of Symbols xxxi
1 Introduction 1
1.1 High-Harmonic Generation (HHG) . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Three-Step Model of HHG . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Experimental Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theoretical Calculation 11
2.1 Dipole Phase Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Absorption of Harmonics in the Medium . . . . . . . . . . . . . . . . . . . 14
Contents
3 Experimental Setup 19
3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Main Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Probe Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 2D EUV Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Direct Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Main Beam Relay Imaging System . . . . . . . . . . . . . . . . . . 24
3.2.3 Transverse Wavefront Sensor and Probe Beam Relay Imaging System 26
3.2.3.1 Analysis of Gas and Plasma Density . . . . . . . . . . . . 29
3.2.4 2D EUV Spectrometer (FFS) . . . . . . . . . . . . . . . . . . . . . 30
3.3 Experimental Parameters Control . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Laser Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Focal Spot Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Gas Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Image Plane of Main Beam Relay Imaging System . . . . . . . . . 32
4 Experimental Results 35
4.1 Experiment Using Ar Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 Driving Beam Characteristics . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Probe Beam Relay Imaging System . . . . . . . . . . . . . . . . . . 39
4.1.3 HHG from Atoms and Ions . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3.1 HHG from Atoms . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3.2 HHG from Ions . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Phase-Matching Condition Analysis . . . . . . . . . . . . . . . . . . 48
4.1.4.1 Phase Mismatch Caused by Neutral Gas Dispersion Δϕgas
and Plasma Dispersion Δϕplasma . . . . . . . . . . . . . . 48
4.1.4.2 Phase Mismatch Caused by Gouy Phase ΔϕGouy . . . . . 48
4.1.4.3 Phase Mismatch Caused by Dipole Phase Δϕdipole . . . . 49
4.1.4.4 Total Phase Mismatch Δϕtotal . . . . . . . . . . . . . . . 51
4.1.5 Modulation of Δϕdipole to HHG from Atoms . . . . . . . . . . . . . 53
4.1.5.1 Change of Focal Spot Size and Parameter Control . . . . 53
Contents
4.1.5.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . 58
4.1.5.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . 64
4.1.6 Modulation of Δϕdipole to HHG from Ions . . . . . . . . . . . . . . 67
4.1.6.1 Change of Focal Spot Size and Parameter Control . . . . 67
4.1.6.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . 72
4.1.6.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . 75
4.1.7 Estimation of Absorption of Harmonics in the Medium . . . . . . . 77
4.2 Experiment Using Ne Gas Jet . . . . . . . . . . . . . . . . . . . . . . . . . 79
5 Discussion, Conclusion, and Perspective 81
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.1 Alignment of the Nozzle in x-Direction . . . . . . . . . . . . . . . . 81
5.1.2 A More Rigorous Model for the Intensity Interpolation . . . . . . . 82
5.1.3 The Next Step to Achieve Phase Matching . . . . . . . . . . . . . . 82
5.1.4 The Exact Time when the Generation of Harmonics Occurs . . . . 83
5.1.5 The Use of Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A Gratings for the EUV Spectrometer 85
A.1 Mechanically Ruled Aberration-Corrected Concave Grating . . . . . . . . . 85
A.2 Hitachi’s 001-0450 Grating Ruling Parameters Deduction . . . . . . . . . . 87
B Gate Valve for the Foil Filter 91
B.1 Design of Adapters of the Foil Filter . . . . . . . . . . . . . . . . . . . . . 91
B.2 Design of the Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 Design of the Rectangular Flange . . . . . . . . . . . . . . . . . . . . . . . 96
C Objective Selection Guide 99
C.1 Main Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.1.1 Classification According to Medium . . . . . . . . . . . . . . . . . . 99
C.1.2 Classification According to Propagation of Light Inside of Objective 100
C.1.3 Classification According to Existence of Focus . . . . . . . . . . . . 100
C.1.4 Classification According to Aberration Correction . . . . . . . . . . 100
Contents
C.2 Glossary of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.3 Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
D Abel Inversion 105
D.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
D.2 Experiment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
E Experimental Parameters Control 107
E.1 Energy Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
E.2 Tunable Aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
F Energy and Conversion Efficiency of Harmonics 113
G Experiment Using Ne Gas Jet 115
G.1 Driving Beam Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 115
G.2 Probe Beam Relay Imaging System . . . . . . . . . . . . . . . . . . . . . . 119
G.3 Ne-Based HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
G.4 Modulation of Focal Spot Size . . . . . . . . . . . . . . . . . . . . . . . . . 123
G.4.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . 123
G.4.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . . . . . . 128
G.4.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . . . . . . 131
G.5 Modulation of Backing Pressure . . . . . . . . . . . . . . . . . . . . . . . . 134
G.5.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . 134
G.5.2 Harmonics Yield Analysis . . . . . . . . . . . . . . . . . . . . . . . 139
G.5.3 Phase Mismatch Analysis . . . . . . . . . . . . . . . . . . . . . . . 141
G.6 Theoretical Harmonics Yield and Modification of Intensity Evolution . . . 144
G.7 Estimation of Absorption of Harmonics in the Medium . . . . . . . . . . . 150
References 153
參考文獻 [1] P. B. Corkum”, “Plasma Perspective on Strong-Field Multiphoton Ionization,” Phys.
Rev. Lett. 71 (1993).
[2] C. Winterfeldt, C. Spielmann, and G. Gerber”, “Colloquium: Optimal control of
high-harmonic generation,” Rev. Mod. Phys. 80 (2008).
[3] ”Hsu-hsin Chu”, “Phase matching of high-harmonic generation,” Memorandum
(2021).
[4] P. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein”, “Generalized phasematching conditions for high harmonics: The role of field-gradient forces,” Phys.
Rev. A 55, 3204–3210 (1997).
[5] T. Popmintchev, Ming-Chang Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M.
Murnane, and H. C. Kapteyn”, “Extended phase matching of high harmonics driven
by mid-infrared light,” Optics Letters 33 (2008).
[6] T. Popmintchev, Ming-Chang Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn”, “Phase matching of high
harmonic generation in the soft and hard X-ray regions of the spectrum,” PNAS 106
(2009).
[7] E. A. Gibson, Quasi-Phase Matching of Soft X-ray Light from High-Order Harmonic Generation using Waveguide Structures, Ph.D. thesis, Colorado School of
Mines (2004).
[8] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L. Blanc, F. Salin, and
P. Agostini”, “Optimizing High Harmonic Generation in Absorbing Gases: Model
and Experiment,” Phys. Rev. Lett. 82 (1999).
[9] C. Chantler, K. Olsen, R. Dragoset, A. Kishore, S. Kotochigova, and D. Zucker,
“X-Ray Form Factor, Attenuation and Scattering Tables (version 2.0),” (2003).
[10] D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev”, “Atomic Data for
Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and
Ions,” Astrophysical Journal 465 (1996).
[11] Te-Sheng Hung, Chi-Hsiang Yang, Jyhpyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin,
and Hsu-hsin Chu, “A 110-TW multiple-beam laser system with a 5-TW wavelengthtunable auxiliary beam for versatile control of laser-plasma interaction,” Applied
Physics B 117 (2014).
[12] ”DonnaStrickland and G. Mourou”, “Compression of amplified chirped optical
pulses,” Optics Communications 55 (1985).
[13] ”Hsu-hsin Chu”, Construction of a 10-TW Laser of High Coherence and Stability
and Its Application in Laser-Cluster Interaction and X-Ray Lasers, Ph.D. thesis,
National Taiwan University (2005).
[14] Yao-Li Liu, Shih-Chi Kao, Yi-Yong Ou Yang, Zhong-Ming Zhang, Jyhpyng Wang,
and Hsu-hsin Chu, “Tomographic analysis of high-order harmonic generation by integrating a phase-matching profile measurement with disruptive interaction-length
control,” Phys. Rev. A 104 (2021).
[15] Lebow Co., “Filter Transmission,” .
[16] J. Primo”, “Three-wave lateral shearing interferometer,” Applied optics 32 (1993).
[17] J. Primot and L. Sogno”, “Achromatic three-wave (or more) lateral shearing interferometer,” J. Opt. Soc. Am. A 12 (1995).
[18] J.-C. Chanteloup”, “Multiple-wave lateral shearing interferometry for wave-front
sensing,” APPLIED OPTICS 44 (2005).
[19] A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion
measurement of inert gases and gas mixtures at 800 nm,” APPLIED OPTICS 47
(2008)
[20] T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog,
O. Gobert, and D. Kaplan, “Self-referenced spectral interferometry,” Applied Physics
B 99 (2010).
[21] T. Kita, T. Harada, N. Nakano, and H. Kuroda”, “Mechanically ruled aberrationcorrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt.
22, 512–513 (1983).
[22] D.Neely, D.Chambers, F.Quinn, and M.Roper, “Soft X-ray grating calibration,”
Tech. rep., Rutherford Appleton Laboratory, Chilton, UK (1997).
[23] T. Harada, K. Takahashi, H. Sakuma, and A. Osyczka”, “Optimum design of a
grazing-incidence flat-field spectrograph with a spherical varied-line-space grating,”
Appl. Opt. 38, 2743–2748 (1999).
[24] Edmund Optics, “Understanding Microscopes and Objectives,” .
[25] Thorlabs, Inc., “Microscope Objective, Tube, and Scan Lens Tutorials,” .
[26] Evident (Olympus), “Microscope Objectives Introduction,” .
[27] Evident (Olympus), “Objective Lens,” .
[28] Evident (Olympus), “Specifications and Identification,” .
[29] Thorlabs, Inc., “Microscope Objectives, Water Dipping or Immersion,” .
指導教授 朱旭新(Hsu-hsin Chu) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明