博碩士論文 109222032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.141.199.243
姓名 吳俊擇(Chun-Tse Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 高轉換效率極紫外光源雷射參數優化
(Optimization of Laser Parameters for Achieving High Conversion Efficiency Extreme Ultraviolet Light Source)
相關論文
★ 一維羅倫茲電漿粒子模擬的動力學特性★ 透過高頻電磁波加速電子來間接加速質子的數值模擬研究
★ 雷射波形對相位穩定質子加速器運作的影響★ 雷射與薄膜作用產生高能質子束之模擬與理論研究
★ 外部反射線路對於磁旋返波振盪器影響之模擬研究★ 利用強場電磁波產生高能質子束的數值模擬研究
★ 考慮受激拉曼散射下多模光纖脈衝雷射放大器之最大可擷取能量的數值模擬研究★ 空間電荷極限電流密度之理論模擬研究
★ 碰撞式粒子網格模擬法之離散粒子效應對電漿波衰減的影響★ 雙脈衝雷射產生錫電漿極紫外光光源之數值研究
★ 考慮受激非彈性散射下脈衝光纖雷射放大器之最大可擷取 能量的數值模擬研究★ 雷射驅動電漿光譜和撞性電漿的動態行為之數值研究–應用於雷射生成錫電漿極紫外光光源
★ 雷射激發錫電漿產生極紫外光之頻譜分析★ 齊次平衡解析方法在求解非線性偏微分方程式的適用性分析
★ 雷射電漿電子加速器之模擬研究★ K頻段高均勻度微波材料處理系統之模擬研究與實用驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 極紫外光(Extreme ultraviolet, EUV)是目前半導體業界最關鍵的光源,這是因為極紫外光具有短波長的特性,可以為光刻技術提供較小的特徵尺寸(Feature size),以持續縮小電晶體的大小。目前極紫外光光源已經投入商用,諸如ASML以及GIGAPHOTON都推出了自己的極紫外光光刻機,然而該項技術的轉換效率仍有尚待改進的地方,其中最重要的研究主題就是如何改善轉換效率。
極紫外光光刻使用雷射產生電漿(Laser-produced plasma)技術產生電漿,並使用錫作為靶材。由於靶材的選擇,光源的中心波長為13.5奈米附近的極紫外光。從實驗或模擬上可以發現,錫電漿輻射出來的極紫外光與所使用的幫浦雷射有著相近的脈衝長度,這代表電漿內部的物理過程達到了準平衡態(Quasi-steady state),因此我們基於準平衡態假設提出了一維簡化模擬框架,該模擬框架能夠快速地計算極紫外光強度以及轉換效率等關鍵參數。
在本論文中,我們詳細描述了模擬框架的基本假設以及架構,並根據模擬框架的模擬結果,我們將電漿分為液體靶材區、雷射吸收區以及熱傳導區,並發現了不同區域的電漿特性對極紫外光的影響,並提出最大化轉換效率的條件。最後,我們根據最大化轉換效率的條件,得到了優化雷射條件的經驗公式。
摘要(英) Extreme Ultraviolet (EUV) light sources are currently the most critical light source in the semiconductor industry. The EUV light provides smaller feature sizes for photolithography to reduce the size of the transistor because of the feature of short wavelength. Right now, ASML and GIGAPHOTON have introduced their EUV lithography systems. However, there are still areas that can be improved. One of the most important research topics is the enhancement of conversion efficiency.
EUV lithography applies the laser-produced plasma method to produce plasma, and tin as the target material. Because of the choice of target, the central wavelength of EUV light is 13.5 nm. Experiments and simulations show that the duration of EUV light emitted from tin plasma is similar to that of the pump laser used, which means that the physical processes inside the plasma have reached the quasi-steady state. Therefore, we propose a one-dimensional simplified simulation framework based on the quasi-steady state. Our simulation framework is capable of quickly calculating key parameters such as EUV light intensity and conversion efficiency.
In this research, we will discuss in detail the assumptions as well as the structure of our simulation framework. Based on the result of our simulation framework, we divide the plasma into the liquid target region, the laser absorption region, and the thermal conduction region. Then, we find out the effects of the plasma properties on the extreme ultraviolet light in the different regions. Finally, we put forward the condition for maximizing the conversion efficiency and an empirical formula for optimizing the laser conditions.
關鍵字(中) ★ 極紫外光
★ 流體模擬
關鍵字(英) ★ Extreme ultraviolet
★ Fluid simulation
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
第一章 緒論 1
1.1. 研究背景 1
第二章 模擬方法 3
2.1. 系統設置 3
2.2. 碰撞輻射平衡模型 5
2.3. 組態躍遷過程 12
2.4. 二能階模型與輻射傳播 15
2.5. 拓寬效應 18
2.6. 其他光吸收與輻射效應 19
第三章 結果與討論 21
3.1. 轉換效率之估算 21
3.2. 特徵電漿區域 23
第四章 結論與展望 31
第五章 參考文獻 32
參考文獻 1 Silverman, P. J. Extreme ultraviolet lithography: overview and development status. Journal of Micro/Nanolithography, MEMS, and MOEMS 4, doi:10.1117/1.1862647 (2005).
2 Sizyuk, V., Hassanein, A., Melsheimer, F., Juschkin, L. & Sizyuk, T. Self-consistent integrated modeling of combined hybrid discharge-laser produced plasma devices for extreme ultraviolet metrology. Physics of Plasmas 30, doi:10.1063/5.0147234 (2023).
3 Levinson, H. J. & Brunner, T. A. Current challenges and opportunities for EUV lithography. (SPIE, International Conference on Extreme Ultraviolet Lithography, 2018).
4 Bakshi, V. EUV Sources for Lithography. Vol. PM149 (SPIE PRESS, 2006).
5 Huang, D. et al. Optical coherence tomography. Science 254, 1178-1181, doi:10.1126/science.1957169 (1991).
6 Yang, Y. et al. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys Med Biol 51, 1649-1659, doi:10.1088/0031-9155/51/7/001 (2006).
7 Fomenkov, I. EUV Source for Lithography in HVM: performance and prospects. (Source Workshop, Amsterdam, 2019).
8 Endo, A. et al. Laser-produced EUV light source development for HVM. (2007).
9 Ando, T. et al. Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas. Applied Physics Letters 89, doi:10.1063/1.2361260 (2006).
10 Behnke, L. et al. Extreme ultraviolet light from a tin plasma driven by a 2-µm-wavelength laser. Opt. Express 29, 4475-4487, doi:10.1364/OE.411539 (2021).
11 Shimada, Y. et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams. Applied Physics Letters 86, doi:10.1063/1.1856697 (2005).
12 Matsukuma, H. et al. Correlation between laser absorption and radiation conversion efficiency in laser produced tin plasma. Applied Physics Letters 107, doi:10.1063/1.4931698 (2015).
13 Fujioka, S. et al. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production. Applied Physics Letters 92, doi:10.1063/1.2948874 (2008).
14 MacFarlane, J. J., Golovkin, I. E. & Woodruff, P. R. HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. Journal of Quantitative Spectroscopy and Radiative Transfer 99, 381-397, doi:10.1016/j.jqsrt.2005.05.031 (2006).
15 Hassanein, A. HEIGHTS initial simulation of discharge produced plasma hydrodynamics and radiation transport for extreme ultraviolet lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS 3, doi:10.1117/1.1631445 (2004).
16 Lai, P.-Y. Numerical study of laser-driven plasma spectroscopy and kinetic behavior of a collisional plasma: For application of a laser-produced Sn plasma extreme ultraviolet light source Doctor thesis, National Central University, (2016).
17 Sizyuk, V., Hassanein, A. & Sizyuk, T. Three-dimensional simulation of laser-produced plasma for extreme ultraviolet lithography applications. Journal of Applied Physics 100, doi:10.1063/1.2365717 (2006).
18 Hassanein, A., La Fontaine, B. M., Sizyuk, V., Harilal, S. S. & Sizyuk, T. in Extreme Ultraviolet (EUV) Lithography (2010).
19 Hassanein, A. Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS 8, doi:10.1117/1.3224901 (2009).
20 Versolato, O. O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography. Plasma Sources Science and Technology 28, doi:10.1088/1361-6595/ab3302 (2019).
21 Christiansen, J. P., Ashby, D. E. T. F. & Roberts, K. V. MEDUSA a one-dimensional laser fusion code. Computer Physics Communications 7, 271-287, doi:10.1016/0010-4655(74)90027-7 (1974).
22 Colombant, D. & Tonon, G. F. X-ray emission in laser-produced plasmas. (1973).
23 Cowan, R. D. Theoretical Calculation of Atomic Spectra Using Digital Computers*. Journal of the Optical Society of America 58, doi:10.1364/josa.58.000808 (1968).
24 Sizyuk, T. & Hassanein, A. Tuning laser wavelength and pulse duration to improve the conversion efficiency and performance of EUV sources for nanolithography. Physics of Plasmas 27, doi:10.1063/5.0018576 (2020).
25 Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. (1982).
26 Itoh, M., Yabe, T. & Kiyokawa, S. Collisional-radiative and average-ion hybrid models for atomic processes in high-Z plasmas. Phys Rev A Gen Phys 35, 233-241, doi:10.1103/physreva.35.233 (1987).
27 Richardson, A. S. 2019 NRL PLASMA FORMULARY. (US Naval Research Laboratory, 2019).
28 O′Sullivan, G. et al. Emission and absorption in laser produced plasmas: processes and applications. Journal of Physics: Conference Series 163, doi:10.1088/1742-6596/163/1/012003 (2009).
指導教授 陳仕宏(Shih-Hung Chen) 審核日期 2023-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明