博碩士論文 109222036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.119.107.161
姓名 施承瑋(Cheng-Wei Shih)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Assembly and Beam Test Analysis of sPHENIX INTT Detector)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) sPHENIX實驗是相對論性重離子對撞機(RHIC)上的 PHENIX 實驗的升級計畫。sPHENIX將通過精確量測噴流(Jets)、噴流之間的相關性(Jet correlations)和介子(Upsilons)來研究夸克-膠子電漿態(QGP)和cold-QCD物理。sPHENIX的粒子軌跡偵測器是由 MVTX、TPC、TPOT和中間層矽軌跡偵測器(INTT)組成。
中大高能團隊於2019年加入了sPHENIX的INTT團隊。 INTT是由56個矽探測模組組成的兩層矽軌跡偵測器,它主要的功能為橋接MVTX和TPC的粒子軌跡,旨在提高具有高橫向動量的帶電粒子的動量解析度、協助粒子軌跡重建和對撞事件同步。INTT團隊計劃生產120個矽探測模組,台灣高能團隊負責其中的三分之一。矽探測模組的組裝是在台灣探測器聯合實驗室(TSiDF)中進行。我們使用聯合實驗室中的可編程多軸龍門工作台加上自主設計的組裝製具來生產矽探測模組以滿足高精度的組裝需求,所有製具皆由中研院精工廠生產。而所有的矽探測模組已於2022年5月完成組裝以及測試。
INTT作為一個粒子軌跡偵測器,其偵測效率值需趨近於100%才能確保所有可能形成粒子軌跡的簇集訊號都被保留。我們於2021年底在日本的ELPH實驗室使用正電子束進行了偵測器測試實驗(Testbeam)。這次實驗為我們提供了一個很好的機會來更全面的了解INTT偵測器的性能。初步的實驗結果表明,其偵測效率值可達99.73±0.02%,符合實驗要求。
摘要(英) The sPHENIX is an upgraded project of the former PHENIX experiment at Rela- tivistic Heavy Ion Collider (RHIC). The sPHENIX aims to study the Quark-Gluon Plasma (QGP) by measuring jets, jet correlations and Upsilons (Υs) precisely. The sPHENIX also has an active cold QCD physics program. The tracking system of sPHENIX consists of the MVTX, the TPC, the TPOT, and the Intermediate silicon Tracker (INTT). The NCU HEP participates in the INTT group. The INTT is a two-layers silicon tracker consisting of 56 silicon ladders. The INTT bridges the tracks of the MVTX and TPC, aims to improve the momentum resolution for charged particles with high transverse momentum, aids the pattern recognition, and the event synchronization. 120 silicon ladders were scheduled to be built in total. The Taiwan INTT group was responsible for one-third of them. The assembly of silicon ladders was carried out at Taiwan Silicon Detector Facility (TSiDF). The self-designed assembly tools, produced by the Academia Sinica (AS), and the programmable gantry table were introduced to meet the requirements of high-precision assembly. The assembly and test of all silicon ladders were finished in May 2022. As a tracker, the detection efficiency of INTT is required to be close to 100% to save all track candidate hits. A testbeam experiment was performed at the end of 2021, at ELPH, Japan. It provides us an opportunity to understand the performance of INTT more completely. The preliminary testbeam result shows that the detection efficiency can be up to 99.73 ± 0.02% which fits the requirement.
關鍵字(中) ★ 布魯克海汶國家實驗室
★ 相對論性重離子加速器
★ 夸克-膠子電漿態
★ 重離子對撞實驗
★ 中間層矽軌跡偵測器
關鍵字(英) ★ BNL
★ RHIC
★ sPHENIX
★ Heavy-ion collision
★ QGP
★ INTT
論文目次 Organizationofthethesis .......................... 1
1 Introduction 2
1.1 QuantumChromodynamics...................... 2 1.2 Quark-GluonPlasma.......................... 5
2 The Experiment Setup 9
2.1 TheRelativisticHeavyIonCollider.................. 9
2.2 ThesPHENIXexperiment ....................... 11 2.2.1 Trackingsystem......................... 12 2.2.2 Electromagneticcalorimeter.................. 18 2.2.3 Superconductingmagnet ................... 20 2.2.4 Hadroniccalorimeter...................... 21 2.2.5 Endcapdetectorsystem .................... 22
3 INTT Ladder Assembly 24
3.1 TheintroductiontoINTT ....................... 24 3.2 Componentqualitycheck ....................... 27 3.3 TaiwanSiliconDetectorFacility.................... 31 3.4 Ladderassemblyprocedures ..................... 34
4 INTT Ladder Testing 41
4.1 Calibrationtest ............................. 41 4.2 Sourcetest ................................ 47
5 Testbeam Experiment 52
5.1 Introductiontothetestbeam2021 .................. 52
5.2 Analysisprocedures .......................... 54
5.2.1 Thetransversealignmentcorrection . . . . . . . . . . . . . 55
5.2.2 Thewindowsizedetermination ............... 56
5.2.3 The longitudinal alignment correction . . . . . . . . . . . . 57
5.2.4 Theboundarycutdetermination............... 58
5.3 Testbeamresults............................. 59 5.3.1 Ladderdetectionefficiency .................. 59
5.3.2 The efficiency and the event process time dependency . . 60 5.3.3 Coulombscatteringstudy................... 63 5.3.4 EnergydepositDACScan................... 64
6 Conclusion 68
A The Ladder Assembly Procedures 71
B The Detail of the Tracking Algorithm 77
Bibliography
參考文獻 [1] Gunnar S. Bali. “QCD forces and heavy quark bound states”. In: Physics Re- ports 343.1-2 (2001), pp. 1–136. DOI: 10.1016/s0370-1573(00)00079- x. URL: https://doi.org/10.1016%2Fs0370-1573%2800% 2900079-x.
[2] M. A. Stephanov. “QCD PHASE DIAGRAM AND THE CRITICAL POINT”. In: International Journal of Modern Physics A 20.19 (2005), pp. 4387–4392. DOI: 10.1142/s0217751x05027965. URL: https://doi.org/10.1142% 2Fs0217751x05027965.
[3] STAR Collaboration. An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement. 2010. DOI: 10.48550/ARXIV.1007.2613. URL: https://arxiv.org/abs/ 1007.2613.
[4] Frithjof Karsch. “Lattice QCD at High Temperature and Density”. In: (2001). DOI: 10.48550/ARXIV.HEP-LAT/0106019. URL: https://arxiv. org/abs/hep-lat/0106019.
[5] Johann Rafelski. “Melting hadrons, boiling quarks”. In: The European Phys- ical Journal A 51.9 (2015), p. 114. ISSN: 1434-6001. DOI: 10.1140/epja/ i2015-15114-0. URL: https://api.semanticscholar.org/ CorpusID:119191818#id-name=S2CID.
[6] Ulrich Heinz and Maurice Jacob. “Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme”. In: arXiv:1508.03260 (2000).
[7] James Glanz. “Particle Physicists Getting Closer To the Bang That Started It All”. In: The New York Times (2000). ISSN: 0362-4331. URL: https:// www.nytimes.com/2000/02/10/world/particle-physicists- getting-closer-to-the-bang-that-started-it-all.html.
[8] STAR Collaboration. “Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration′s critical assessment of the evidence from RHIC collisions”. In: Nuclear Physics A 757.1-2 (2005), pp. 102–183. DOI: 10.1016/j.nuclphysa.2005.03.085. URL: https: //doi.org/10.1016%2Fj.nuclphysa.2005.03.085.
[9] PHENIX Collaboration. “Formation of dense partonic matter in relativis- tic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration”. In: Nuclear Physics A 757.1-2 (2005), pp. 184–283. DOI: 10.1016/j.nuclphysa.2005.03.086. URL: https://doi. org/10.1016%2Fj.nuclphysa.2005.03.086.
[10] BRAHMS Collaboration. “Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment”. In: Nuclear Physics A 757.1-2 (2005), pp. 1–27. DOI: 10.1016/j.nuclphysa.2005. 02.130. URL: https://doi.org/10.1016%2Fj.nuclphysa.2005. 02.130.
[11] PHOBOS Collaboration. “The PHOBOS perspective on discoveries at RHIC”. In: Nuclear Physics A 757.1 (2005). First Three Years of Operation of RHIC, pp. 28–101. ISSN: 0375-9474. DOI: https://doi.org/10.1016/ j.nuclphysa.2005.03.084. URL: https://www.sciencedirect. com/science/article/pii/S0375947405005282.
[12] Jonah E. Bernhard, J. Scott Moreland, and Steffen A. Bass. “Bayesian esti- mation of the specific shear and bulk viscosity of quark–gluon plasma”. In: Nature Physics 15.11 (2019), pp. 1113–1117. DOI: 10.1038/s41567-019- 0611-8. URL: https://doi.org/10.1038%2Fs41567-019-0611-8.
[13] Sera Cremonini, Umut Gürsoy, and Phillip Szepietowski. “On the tempera- ture dependence of the shear viscosity and holography”. In: Journal of High Energy Physics 2012.8 (2012). DOI: 10.1007/jhep08(2012)167. URL: https://doi.org/10.1007%2Fjhep08%282012%29167.
[14] Huichao Song et al. “Hadron spectra and elliptic flow for 200 A GeV Au+Au collisions from viscous hydrodynamics coupled to a Boltzmann cascade”. In: Physical Review C 83.5 (2011). DOI: 10.1103/physrevc.83.054910. URL: https://doi.org/10.1103%2Fphysrevc.83.054910.
[15] sPHENIX Collaboration. An Upgrade Proposal from the PHENIX Collaboration. 2015. DOI: 10.48550/ARXIV.1501.06197. URL: https://arxiv. org/abs/1501.06197.
[16] Ani Aprahamian et al. “Reaching for the horizon: The 2015 long range plan for nuclear science”. In: (Oct. 2015).
[17] M. Harrison, T. Ludlam, and S. Ozaki. “RHIC project overview”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom- eters, Detectors and Associated Equipment 499.2 (2003). The Relativistic Heavy Ion Collider Project: RHIC and its Detectors, pp. 235–244. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(02)01937-X. URL: https://www.sciencedirect.com/science/article/pii/ S016890020201937X.
[18] sPHENIX Collaboration. “sPHENIX Beam Use Proposal - Addendum for 20-Cryoweek Scenario”. In: (2021).
[19] A. Accardi et al. Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all. 2012. DOI: 10.48550/ARXIV.1212.1701. URL: https://arxiv.org/abs/1212.1701.
[20] C. A. Aidala et al. “Design and Beam Test Results for the 2-D Projective sPHENIX Electromagnetic Calorimeter Prototype”. In: IEEE Transactions on Nuclear Science 68.2 (2021), pp. 173–181. DOI: 10.1109/tns.2020. 3034643. URL: https://doi.org/10.1109%2Ftns.2020.3034643.
[21] C. A. Aidala et al. “Design and Beam Test Results for the sPHENIX Elec- tromagnetic and Hadronic Calorimeter Prototypes”. In: IEEE Transactions on Nuclear Science 65.12 (2018), pp. 2901–2919. DOI: 10.1109/tns.2018. 2879047. URL: https://doi.org/10.1109%2Ftns.2018.2879047.
[22] R.A. Bell et al. “The BaBar superconducting coil: design, construction and test”. In: Nuclear Physics B - Proceedings Supplements 78.1 (1999). Ad- vanced Technology and Particle Physics, pp. 559–564. ISSN: 0920-5632. DOI: https://doi.org/10.1016/S0920-5632(99)00603-9. URL: https://www.sciencedirect.com/science/article/pii/ S0920563299006039.
[23] sPHENIX Collaboration. “A Monolithic-Active-Pixel-Sensor-based Vertex Detector (MVTX) for the sPHENIX Experiment at RHIC”. In: sPHENIX note sPH-HF-2018-001 (2018). URL: https://indico.bnl.gov/event/ 4072/attachments/11335/13816/sPH-HF-2018-001-final. pdf.
[24] H Klest. “Overview and design of the sPHENIX TPC”. In: Journal of Physics: Conference Series 1498.1 (2020), p. 012025. DOI: 10.1088/1742-6596/ 1498/1/012025. URL: https://doi.org/10.1088%2F1742-6596% 2F1498%2F1%2F012025.
[25] S. Agostinelli et al. “Geant4—a simulation toolkit”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, De- tectors and Associated Equipment 506.3 (2003), pp. 250–303. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01368-8. URL: https://www.sciencedirect.com/science/article/pii/ S0168900203013688.
[26] J. Adams et al. “The STAR event plane detector”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 968 (2020), p. 163970. DOI: 10.1016/j.nima. 2020.163970. URL: https://doi.org/10.1016%2Fj.nima.2020. 163970.
[27] Tomoaki Nakamura. “PHENIX focus: Beam Beam Counter”. en. In: (2020). DOI: 10.5281/ZENODO.4007995. URL: https://zenodo.org/ record/4007995.
[28] C. Aidala et al. “The PHENIX Forward Silicon Vertex Detector”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spec- trometers, Detectors and Associated Equipment 755 (2014), pp. 44–61. DOI: 10.1016/j.nima.2014.04.017. URL: https://doi.org/10. 1016%2Fj.nima.2014.04.017.
[29] J.R. Hoff et al. “FPHX: A new silicon strip readout chip for the PHENIX experiment at RHIC”. In: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC). IEEE, 2009. DOI: 10.1109/nssmic.2009.5401873. URL: https://doi.org/10.1109%2Fnssmic.2009.5401873.
[30] DES comp. Temperature Cycling Testing: Coffin-Manson Equation. 2014. URL: https://www.desolutions.com/blog/2014/10/temperature- cycling-testing-coffin-manson-equation/.
[31] INTT Taiwan group. The INTT ladder assembly at TSiDF. 2022. URL: https: //www.youtube.com/watch?v=nNGGhatG5Kw.
[32] Wei-Che Tang. The Source Test Mechanical Support. 2021. URL: https:// indico . cern . ch / event / 1005840 / contributions / 4222453 / attachments / 2184914 / 3691507 / weekly _ report _ 2021 _ 2 _ 5 . pdf.
[33] Niklaus Berger et al. “Multiple Coulomb scattering in thin silicon”. In: Journal of Instrumentation 9.07 (2014), P07007–P07007. DOI: 10.1088/1748- 0221/9/07/p07007. URL: https://doi.org/10.1088%2F1748- 0221%2F9%2F07%2Fp07007.
指導教授 郭家銘(Chia-Ming Kuo) 審核日期 2022-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明