博碩士論文 109222601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.190.217.134
姓名 沙塔(Saba Taj)  查詢紙本館藏   畢業系所 物理學系
論文名稱 研究 Dalitz Higgs 的 Muon 效率用於 Run II 和多變量電子用於 CMS 的 Run III
(Study of Muon Efficiency for Dalitz Higgs for Run II and Multivariate Electron ID for Run III at CMS)
相關論文
★ 利用CMS探測器量測7TeV下的Zγ產生截面★ 以CMS 偵測器在質心質量為8TeV使用雙渺子和三秒子頻道尋找雙電荷希格斯玻色子
★ 在質子對撞能量8TeV下尋找具有雙電子雙渺子末態的激發態輕子★ Measurement of Zγ production in 5 fb-1 of pp collisions at √s = 7 TeV with the CMS detector
★ Search for a Higgs boson decaying into γ∗γ → eeγ in pp collisions at √s = 8 TeV with the CMS detector★ Measurement of Z boson production in the electron decay channel in p+Pb collisions at √sNN = 5.02 TeV with the CMS detector
★ 火花偵測器的製成★ Search for the production of two Higgs bosons in the final state with two photons and two b quarks in proton-proton collision at √s = 13 TeV
★ Search for Exotic Decay of A Higgs Boson into A Dark Photon and a Standard Model Photon in pp Collisions at √s = 13 TeV★ Search for a Higgs boson decay into γ*γ→μμγ in pp collisions at √s = 13 TeV
★ Search for the rare decays of Z and Higgs bosons to J/ψ plus photon at √s = 13 TeV★ Measurement of Zγ production cross section in pp collisions at sqrt(s) = 13 TeV with the CMS detector
★ Search for H→Zγ→bbγ produced in association with a Z boson in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC★ nono
★ TCAD simulation of silicon detector★ Assembly and Beam Test Analysis of sPHENIX INTT Detector
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主要呈現利用標記和探測 (T&P) 方法測量渺子(μ)的效率。利用 Z → μμ 和 J/Ψ → μμ 事件,分別對渺子對 pT 和 η 的效率進行測量。
此測量使用了 2016、2017 和 2018 年的 UL 數據。此分析使用座落在大型強子對 撞機(LHC)的緊湊渺子線圈(CMS)在 Run -2 期間於對撞能量為 13 兆電子伏特 (TeV)時所收集的質子與質子對撞數據,對應總光度 137.1/fb 之事件。 電子識別在 CMS 實驗尋找新物理學和精密測量中扮演重要角色。與傳統的基於 切割的識別(cut-base idification)相比,多變量技術(multive technique)顯示出顯 著的背景抑制能力。
自大強子對撞機 Run-1 以來,CMS 實驗使用 BDT 識別電子,且該策略有穩定的 進步,讓 真正電子與背景電子分離有更好的表現。背景電子可以是非瞬發電子(prompt electron, 即噴射流中產生的電子或來自光子轉換的電子或與任何真正電子完全 無關的重建電子。
本篇論文並不考慮來自濤輕子衰變的電子。本篇論文使用 XG-Boost 作為多變量 工具對大強子對撞機 Run-3 進行電子多變量的訓練鑑定。
摘要(英) The thesis reports on muon efficiencies being measured with the Tag and Probe (T&P) method performed on Z → μμ and J/Ψ → μμ events in bins of pT and η. Measurements are extracted using 2016, 2017 and 2018 UL data. The analysis is performed on data collected by the CMS experiment at the LHC from proton-proton collisions with a center- of-mass energy of 13 TeV during the full Run-2 period, corresponding to an integrated luminosity of 137.1 fb−1.
Electron identification has been playing a crucial role in the search for new physics and also precision measurements at CMS. The multivariate technique has shown significant background rejection power, compared to the conventional cut-based identification. The CMS experiment identifies electrons with BDTs since the LHC Run 1, and this strategy was steadily improved. True prompt electrons are separated from the background, which can be either non-prompt electrons (i.e., electrons in jets or from converted photons) or reconstructed electrons entirely unrelated to any real electron. Electrons from tau leptons decays are not considered. In this thesis, the training of the electron multivariate identification for the LHC Run3 results using XG-Boost as a multivariate tool have been done.
關鍵字(中) ★ 介子 (μ) 測量效率
★ 電子鑑定
關鍵字(英) ★ Single muon efficiency
★ Electron Identification
論文目次 Contents
1 StandardModel1
1.1 TheStandardModel.............................. 1
1.2 ElementaryParticles.............................. 2
1.2.1 IntermediateVectorBoson....................... 2
1.2.2 Fermions................................. 3
1.3 InteractingFieldsinStandardModel..................... 4
1.4 HiggsBoson................................... 6
1.4.1 Higgsbosonproduction........................ 6
1.4.2 HiggsBosonDecay........................... 7
1.5 DalitzHiggs................................... 10
2 Experimentalsetup12
2.1 TheLHC.................................... 12
2.1.1 Operation................................ 13
2.2 Luminosity................................... 14
2.3 TheCMSDetector............................... 15
2.3.1 PurposeofCMSDetector....................... 16
2.3.2 TheCoordinateSystem........................ 16
2.3.3 FeaturesofCMSDetector....................... 17
2.4 SectionsofCMSDetector........................... 17
2.4.1 TrackingSystem............................ 18
2.5 TheCalorimeter................................. 19
2.5.1 ElectromagneticCalorimeter...................... 19
2.5.2 HadronicCalorimeter(HCAL)..................... 21
2.6 TheMagnet................................... 22
2.7 TheMuonDetectors.............................. 23
2.8 TriggerandDataAcquisitionSystem(TriDAS)............... 24
3 AnalysisStrategy26
3.1 Introduction................................... 26
3.2 AnalysisStrategy................................ 28
3.2.1 BackgroundComposition........................ 28
3.2.2 StatisticalMethods........................... 29
3.3 SimulatedSamples............................... 31
3.3.1 DataSamples.............................. 32
3.4 Triggers..................................... 33
3.4.1 IsoMu27(SingleMuon)Trigger.................... 34
3.5 ObjectandEventSelection.......................... 36
3.5.1 Muons.................................. 36
3.6 MuonEfficiencyMeasurements........................ 38
3.6.1 ReconstructionandIdentification................... 38
3.6.2 Impactparameterrequirements.................... 38
3.6.3 Isolationrequirements......................... 41
3.6.4 Trackingefficiency........................... 41
3.6.5 OverallResults............................. 41
4 MultivariateElectronID 44
4.1 MachineLearning................................ 44
4.1.1 TrainingaModelinMachineLearning................ 44
4.1.2 Thebias-variancetradeoff....................... 46
4.2 BoostedDecisionTrees:............................ 48
4.2.1 GradientBoostingfordecisiontrees.................. 50
4.3 MultivariateelectronIdentificationforLHCRun3.............. 51
4.4 GeneralTrainingStrategyandrequirements................. 52
4.4.1 Inputvariables............................. 53
4.4.2 XGBoostHyperparameter....................... 56
4.4.3 Rankingofvariables.......................... 60
4.4.4 XGBoostclassifier........................... 61
4.4.5 Efficiencies................................ 61
4.4.6 ReceiverOperatingCharacteristicscurve............... 61
4.5 Conventionalmethod.............................. 65
5 SummaryandConclusion67
參考文獻 [1] Harry Casimir Merida, “The Fundamental Particles and The Product of their Inter- actions”,
[2] LHCb Collabresonances consistent with pentaquark states in λ0b → J K−p decays. Ψ
Physical Review Letters, 2015.
[3] Mark Thomson, Modern Particle Physics.
[4] Rutherford, E., 1919, ’Collision of alpha Particles with Light Atoms IV. An Anoma- lous Effect in Nitrogen’, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 37, pp.581-587.
[5] Soddy, F., 1920, ’Name for the Positive Nucleus’, Nature, 106, pp.502-503. Muta, T., 2010, ’Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories’, World Scientific.
[6] Rutherford, E., 1899, ”Uranium radiation and the electrical conduction produced by it”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47, pp.109-163.
[7] G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett., vol. B716, pp. 1–29, 2012.
[8] Wikipedia contributors, ”Standard model - Wikipedia, the free encyclopedia,”
[9] F. Abe et al., ”observation of top quark in pp collissios” Phys. Rev. Lett., vol. 74, pp. 26262631, 1995.
69
BIBLIOGRAPHY
[10] W.-M. Y. et al, ”Review of particle physics,” Journal of Physics G: Nuclear and Particle Physics, vol. 33, no. 1, p. 1, 2006
[11] [32] Oliver Sim Bruning, Paul Collier, P Lebrun, Stephen Myers, Ranko Ostojic, John Poole, and Paul Proudlock. LHC Design Report. CERN, Geneva, 2004. URL https://cds.cern.ch/record/782076.
[12] The ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Col- lider. J. Inst., 3(08):S08003-S08003, 2008. doi:10.1088/1748-0221/3/08/s08003.URL http://dx.doi.org/10.1088/1748-0221/3/08/S08003.
[13] The CMS Collaboration. The CMS experiment at the CERN LHC. J. Inst., 3(08): S08004-S08004, 2008. doi: 10.1088/1748-0221/3/08/s08004. URL http://dx.doi. org/10.1088/1748-0221/3/08/S08004.
[14] Jr. Alves, A. Augusto et al. The LHCb Detector at the LHC. JINST, 3:S08005, 2008. doi: 10.1088/1748-0221/3/08/S08005.
[15] The ALICE Collaboration. The ALICE experiment at the CERN LHC. J. Inst., 3 (08):S08002-S08002, 2008. doi: 10.1088/1748-0221/3/08/s08002. URL http://dx. doi.org/10.1088/1748-0221/3/08/S08002.
[16] Karlheinz Schindl. The injector chain for the LHC. (CERN-OPEN-99-052):6 p, 1999. URL http://cds.cern.ch/record/397574.
[17] The CMS Collaboration, ”CMS Detector Performance and Software”, volume 1 of CMS Physics Technical Design Report. CERN, Geneva, 2006. CMS-TDR-008-1. CERN-LHCC-2006-001.
[18] S. Chatrchyan et al. (The CMS Collaboration). ”The CMS experiment at the CERN LHC”. In J. Instrum., 3(08): S08004, 2008. doi:10.1088/1748-0221/3/08/S08004.
[19] W. Adam, Th. Speer, B. Mangano, and T. Todorov. ”Track reconstruc- tion in the CMS tracker”. CMS NOTE 2006/041, 21 December 2005
[20] E. L.Borrello, A.Messineo, ”Sensor design for the cms silicn strip tracker”, CMS NOTE 2003/020, 2003.
[21] Friedl, Markus. ”The CMS silicon strip tracker and its electronic readout”. PhD diss., Vienna, Tech. U., 2001.
[22] CDF Collaboration, ”Observation of top qaurk production in ppbar collisions with the371 collider detector at fermilab”, Phys. Rev. Lett. 74 (1995) 2626,372
[23] Davide Cieri, Development of a Level-1 Track and Vertex Finder for the Phase II CMS experiment upgrade”,CERN-THESIS-2018- 045(2018/02/26).
[24] Kazim Ziya GUMUS “Search For New Physics In The Compact Muon Solenoid (CMS) Experiment And The Response Of The CMS Calorime- ters To Particles And Jets Article”, DOI: 10.2172/936638 August, 2008
[25] Sushil Singh Chauhan “Search for Quark Compositeness at √s = 14 TeV at the Large Hadron Collider”,CERN-THESIS-2010-161 (2010/03/22)
[26] F. Abe, H. Akimoto, and A. Akopian, “Observation of top quark pro- duction in pp collisions with the collider detector at Fermilab”, Physical Review Letters 74 2626, 1995
[27] CMS Collaboration Collaboration, “Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at √s = 13 TeV”, Technical Report 1017 CMS-PAS-HIG-19-001, CERN, Geneva, 2019.
[28] CMS Collaboration, “Measurement of the properties of the Higgs boson in the four- lepton final state at p √s = 13 TeV”, CMS Physics Analysis Note CMS-AN-15-277, CERN, 2016.
[29] https://scikit-learn.org/stable/modules/cross validation.html
[30] procedure for the LHC Higgs boson search combination in summer 2011. Aug 2011.
[31] Georges Aad, Brad Abbott, Dale Charles Abbott, A Abed Abud, Kira Abeling, Deshan Kavishka Abhayasinghe, Syed Haider Abidi, OS AbouZeid, Nicola Louise Abraham, Halina Abramowicz, et al. Evidence for Higgs boson decays to a low-mass dilepton system and a photon in pp collisions at √s= 13 TeV with the atlas detector. Physics Letters B, 819:136412, 2021
[32] Marcela Carena, Ian Low, and Carlos EM Wagner. Implications of a modified Higgs to diphoton decay width. Journal of High Energy Physics, 2012(8):1–26, 2012.
[33] Gerald S Guralnik, Carl R Hagen, and Thomas WB Kibble. Global conservation laws and massless particles. Physical Review Letters, 13(20):585, 1964.
[34] Hao-Ren Jheng et al. Search for the rare decays of Z and Higgs bosons to J/Ψ plus photon at √s = 13 TeV. Ph.D. thesis, National Central University, 2019.
[35] Alexander Yu Korchin and Vladimir A Kovalchuk. Angular distribution and forward- backward asymmetry of the Higgs-boson decay to photon and lepton pair. The Eu- ropean Physical Journal C, 74(11):1–9, 2014.
[36] Albert M Sirunyan, Armen Tumasyan, Wolfgang Adam, Federico Ambrogi, Ece Asi- lar, Thomas ‘Bergauer, Johannes Brandstetter, Erica Brondolin, Marko Dragicevic, Janos Ero ̈, et al. Search for the decay of a higgs boson in the γ channel in proton- proton collisions at √s = 13tev. Journal of High Energy Physics, 2018(11):1–42, 2018.
[37] PC Tiwari, S Choudhury, JR Komaragiri, and AM Sirunyan. Search for the decay of a higgs boson in the channel in proton-proton collisions at √s = 13 tev. JOURNAL OF HIGH ENERGY PHYSICS, (11), 2018.
[38] Andrea Turcati. Model-independent search of new physics in the Z+ b final state in pp collision at √s= 8 TeV with CMS experiment at LHC. PhD thesis, Trieste U., 2015.
[39] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004,
[40] CMS Collaboration, “Measurement of the Properties of a Higgs Boson in the Four- Lepton 998 Final State”, Phys. Rev. D 89 (2014), no. 9, 092007,
[41] CMS Collaboration, “Study of the Mass and Spin-Parity of the Higgs Boson Candi- date 1001 via Its Decays to Z Boson Pairs”, Phys. Rev. Lett. 110 (2013) 081803,
[42] CMS Collaboration, “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV”, Phys. Rev. D 92 (2015) 012004,
[43] CMS Collaboration, “Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs”, Phys. Lett. B 736 (2014) 64,
[44] CMS Collaboration, “Limits on the Higgs boson lifetime and width from its decay to four charged leptons”, Phys. Rev. D 92 (2015) 072010,
[45] CMS Collaboration, “Measurement of differential and integrated fiducial cross sec- tions for higgs boson production in the four-lepton decay channel in pp collisions at √s= 7 and 8 tev”,
[46] CMS Collaboration Collaboration, “Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at √s = 13 TeV”, Technical Report CMS-PAS-HIG-19-001, CERN, Geneva, 2019.
[47] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs Cross Sections Higgs Properties”, CERN Report CERN-2013-004, 2013.
[48] F. Maltoni, D. Pagani, A. Shivaji, and X. Zhao, “Trilinear Higgs coupling determi- nation via single-Higgs differential measurements at the LHC”, Eur. Phys. J. C 77 (2017), no. 12,
[49] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO vector-boson production matched with shower in POWHEG”, JHEP 07 (2008) 060,
[50] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algo- rithms”, JHEP 11 (2004) 040,
[51] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070,
[52] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088,
[53] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched 1037 with shower in POWHEG”, JHEP 02 (2010) 037, doi:10.1007/JHEP02(2010)037,
[54] H. B. Hartanto, B. Jager, L. Reina, and D.Wackeroth, “Higgs boson production in association with top quarks in the POWHEG BOX”, Phys. Rev. D91 (2015), no. 9, 094003,
[55] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, “NNLOPS simulation of Higgs boson production”, JHEP 10 (2013) 222,
[56] K. Hamilton, P. Nason, and G. Zanderighi, “MINLO: Multi-Scale Improved NLO”, JHEP
[57] G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “H/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, JHEP 10
[58] Y. Gao et al., “Spin determination of single-produced resonances at hadron collid- ers”,Phys. Rev. D 81 (2010) 075022,
[59] CMS Collaboration, “Performance of CMS Muon Reconstruction in pp Col- lision Events at √s = 7 TeV”, JINST 7 (2012) P10002, doi:10.1088/1748- 0221/7/10/P10002, arXiv:1206.4071.
[60] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Pro- ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis- covery and Data Mining, KDD ’16, pp. 785–794. ACM, New York, NY, USA, 2016. arXiv:1603.02754. doi:10.1145/2939672.2939785.
[61] CMS Collaboration, “Particle-flow commissioning with muons and electrons from J/Psi and W events at 7 TeV”, Physics Analysis Summary CMS-PAS-PFT-10-003, 2010.
[62] CMS Collaboration, “Boosted jet identification using particle candidates and deep neural networks”, Detector Performance Note CMS-DP-2017-049, 2017.
[63] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
[64] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017), no. 02, P02014, doi:10.1088/1748- 0221/12/02/P02014, arXiv:1607.03663.
[65] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748- 0221/6/11/P11002, arXiv:1107.4277.
[66] B. Efron and T. Hastie, “Computer Age Statistical Inference”. Institute of Mathemat- ical Statistics Monographs. Cambridge University Press, 2016. ISBN 9781107149892.
[67] M. Cacciari, G. P. Salam, and G. Soyez, “Use of charged-track informa- tion to subtract neutral pileup”, Phys. Rev. D 92 (2015), no. 1, 014003, doi:10.1103/PhysRevD.92.014003, arXiv:1404.7353.
[68] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”, J. Comput. Syst. Sci. 55 (1997), no. 1, 119–139, doi:10.1006/jcss.1997.1504.
[69] C. Adam-Bourdarioset al., “The Higgs boson machine learning challenge”, volume 42 of Proceedings of Machine Learning Research, pp. 19–55. PMLR, Montreal, Canada, 2015.
[70] P. Pigard, “Electron studies and search for vector boson scattering in events with four leptons and two jets with the CMS detector at the LHC”. PhD thesis, Ecole Polytechnique, 2017.
[71] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchi- cal Reinforcement Learning”, 2010.
[72] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. K ́egl, “Algorithms for hyper-parameter optimization”, in Advances in Neural Information Processing Systems 24, J. Shawe- Taylor et al., eds., pp. 2546–2554. Curran Associates, Inc.,2011.
[73] C. K. I. W. Carl Edward Rasmussen, “Gaussian Processes for Machine Learning”. Institute of Mathematical Statistics Monographs. The MIT Press, 2006. ISBN 0-262- 18253-X.
指導教授 郭家銘(Kuo, Chia Ming) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明