博碩士論文 109223021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.117.9.7
姓名 陳芳翊(Fang-I Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發醛酮類化合物與金屬有機骨架材料應用於周界揮發性有機物檢測方法
(Development of aldehydes and ketones and metal-organic framework materials for the detection of volatile organic compounds in the air)
相關論文
★ 藉由注氫技術改善質譜儀電子游離源條件以優化空氣有害污染物連續監測方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主旨為針對環境空氣中兩項重要有機物質,醛酮類化合
物及 54 項光化臭氧前驅物 (PAMS),論文架構包含兩部份,第一部
分為開發醛酮類化合物檢測方法與收集環境實測數據;第二部分為利
用新穎金屬有機骨架 (MOFs) 材料並應用於光化臭氧前驅物吸附研
究。
第一部分開發醛酮類化合物吸附匣檢測方法,我國現行醛酮類化
合物檢測方法為吸收瓶法,方法偵測極限較高 (數個 ppb),以三大石
化性質特殊性工業區定期採樣監測為例,數據常為「未檢出」 (ND),
無法應用於臭氧減量評估。本研究參考美國標準方法,開發優化之醛
酮類檢測方法,搭配自製衍生試劑,方法偵測極限 (MDL) 為 (0.09-
0.15 ppbv),為現行方法之 1/60 倍。實測地點挑選萬華光化站 (移動
源)、六輕工業區站與仁大工業區站 (固定源)。研究結果顯示萬華光
化站甲醛測值 < 0.6 ppbv、乙醛多為 ND;在一天的濃度趨勢中,中
午時段濃度比上、下班時段高,顯示此區醛酮類排放以二次光化生成
為主。六輕工業區監測結果顯示甲醛、乙醛大多數時間 < 1 ppbv,與
吸收瓶法比對結果顯示兩方法數據大致相符,但吸附匣法 MDL 較低,
相較於吸收瓶法可測得環境低濃度。仁大工業區結果顯示甲醛最高值
為 11.23 ppbv,風向推估可能來自位於採樣地點東南方某工廠;乙醛
監測結果< 1 ppbv。
論文的第二部分探討新穎 MOFs 材料應用於 54 項 PAMS 吸附研
究,主要使用之 MOFs 為 UiO-66,其架構由無機金屬鹽離子或金屬
團簇提供中心點,並與有機配位體橋接,形成孔洞結晶聚合材料,具
有可調控的孔徑、孔隙率高、高比表面積、可重複使用的優勢,而被
廣泛應用於各種領域。對於微量氣體分析研究則鮮少有文獻發表。
UiO-66 屬於高穩定性、疏水性材料,本研究使用 100 ppbC 之 54
項 PAMS 標準氣體進行 UiO-66 吸附能力測試,並與傳統多重床碳吸
附劑相比較。研究結果顯示單一材料 UiO-66 即可吸附範圍涵蓋 C2-
C11 之 54 項 PAMS,與多重床碳吸附劑效果相似,檢量線線性良好,
R2> 0.9950。在熱脫附溫度與氣體吸附量測試中,結果顯示 250℃即
可達到大約 99%完全熱脫附。若以單位碳感度計算,UiO-66 之吸附
結果也與多重床碳吸附劑一致。為了探討 UiO-66 在多次吸、脫附後
之材料結構差異,以 X 光繞射儀 (XRD) 量測結果發現 UiO-66 在高
溫後晶體已破壞不均,導致材料孔洞產生大小不一致的改變,大、小
孔洞分別益於大、小分子之有機物吸附,以碳數廣泛之 PAMS 為例,
單一材料即可吸附 C2-C11 PAMS。最後將 UiO-66 實際應用於周界實
測,每日執行查核與空白測試,連續實測五天查核回收百分率為 78%-
109%之間,RSD < 7%,符合標準方法查核規範 (回收率 < ±25%),
顯示單一 UiO-66 適合作為有機物質周界實測之吸附材料。
摘要(英) This study aimed to focus on two critical organic substances, which were 15 carbonyls and 54 photochemical ozone precursors (54 PAMS) in ambient air. This study consists of two parts; the first part is to develop the
analytical method to detect the ambient carbonyls and collect the field data from various emission sources. The second part is to utilize the novel metal-organic frameworks (MOFs) materials that apply to the adsorption
investigation of 54 PAMS. The first section is to develop the cartridge method for detecting ambient carbonyls, which provides a lower MDL (method detection limit) option than the current method (impinger method). The data collected from the three petrochemical designated industrial zones (DIZs) were often shown as "Non-Detected" (ND), which is unable to provide sufficient information for ozone reduction assessment. By referencing the USEPA TO-11A compendium method, an optimized method for detecting carbonyls as well as the self-made cartridges were developed for ambient monitoring. The MDL for cartridge method was sub ppbv level (0.09-0.15 ppbv), which was 1/60 fold compared with the current method. Field measurement sites were selected from Wan-hua PAMS (mobile sources), the sixth naphtha cracker DIZ, and Renda Industrial complex (stationary sources). The results show that the measurement for formaldehyde in Wanhua PAMS is below 0.6 ppbv, and acetaldehyde is mostly ND. The diurnal trend showed that the mixing ratio is the highest at noon, indicating that the carbonyls mainly came from the secondary photochemical reaction.
According to the data collected from the sixth naphtha cracker DIZ,formaldehyde and acetaldehyde are below 1 ppbv, and the impinger method show ND, which is roughly consistent. The lower MDL for the cartridge method provides lower mixing ratios which can be used to investigate the photochemical reaction of the ozone precursors. The results
from Renda Industrial complex showed the highest mixing ratio for formaldehyde was 11.23 ppbv, which indicated that the source was from a formaldehyde-process factory in the southeast. Acetaldehyde was below 1 ppbv through the whole monitoring period.
The second section of the thesis is the application of the novel MOFs used to investigate the 54 PAMS adsorption studies. The main MOF is used in UiO-66, a porous crystalline polymeric material with adjustable pore
size, high porosity, high specific surface area, and reusability, and is widely used in various fields. However, very little literature has been published on VOC studies′ adsorption. UiO-66 is a highly stable and hydrophobic
material. In this study, 54 PAMS of mixing ratio 100 ppbC, were used to investigate the adsorption capability of UiO-66, compared with the traditional multiple-bed carbon adsorbents. The research results show that a single material, UiO-66 could adsorb 54 PAMS covering C2-C11, similar to the multi-bed carbon adsorbents. The calibration curve has good linearity (R2 > 0.9950), and the thermal desorption ability could achieve 99% at 250°C. To test the per carbon response, the adsorption results of UiO-66 are highly consistent with the multiple carbon adsorbents. After
repeated cold trap and thermal desorption of the UiO-66 adsorbents, the Xray diffractometer (XRD) results show that the crystal of UiO-66 has collapsed unevenly, resulting in the formation of different size surface holes. The uneven size pore of the single UiO-66 provides the adsorption
capability for the wide range of 54 PAMS. As a result, UiO-66 is applied to the five-days continuous measurement calibration and blank test. The recovery is 78%-109%, and RSD (relative standard deviation) is below 7%, which meets the regulation of the standard method. The results showed that a single UiO-66 is a suitable adsorbent for ambient monitoring.
關鍵字(中) ★ 醛酮類化合物
★ 金屬有機骨架
★ 臭氧前驅物
關鍵字(英) ★ Carbonyls
★ MOF
★ PAMS
論文目次 中文摘要 I
Abstract V
目錄 XI
圖目錄 XV
表目錄 XXI
第一章 前言 1
1-1 研究背景 1
1-2 臭氧前驅物 4
1-3 研究動機 19
第二章 文獻回顧 21
2-1 醛酮類化合物檢測方法 21
2-1-1 吸收瓶法 22
2-1-2 吸附匣法 23
2-2 光化臭氧前驅物檢測方法 29
2-3 VOCs 吸附劑 33
2-4 金屬有機骨架材料簡介 41
第三章 醛酮類化合物檢測 45
3-1 吸附匣檢測方法 45
3-1-1 周界採樣裝置 45
3-1-2 分析方法 48
3-1-3 檢量線建立 50
3-1-4 精密度與準確度 51
3-1-5 方法偵測極限 53
3-2 自製吸附匣 56
3-2-1 自製吸附匣步驟 56
3-2-2 自製與商業化吸附匣比測 59
3-3 醛酮類化合物周界採樣結果 62
3-3-1 移動污染源 62
3-3-2 固定污染源 65
3-4 小結 73
第四章 金屬有機骨架材料檢測 77
4-1 吸附材料檢測方法 77
4-1-1 UiO-66 之製備 77
4-1-2 吸附管製作 82
4-1-3 分析系統介紹 84
4-2 UiO-66 吸附材料測試結果 87
4-2-1 建立吸附料檢測平台與穩定性驗證 90
4-2-2 測試金屬有機骨架材料初步吸附性測試 93
4-2-3 孔徑特徵比較 100
4-2-4 空白測試比較 103
4-2-5 金屬有機骨架材料應用於檢測周界空氣 105
4-2-6 層析圖譜比較 110
4-3 小結 114
第五章 結論 115
第六章 參考文獻 117
參考文獻 [1] 空氣品質標準法規,行政院環境保護署,2020。
[2] B. Chu, S. Zhang, J. Liu, Q. Ma, H. He (2021) Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. Journal of Environmental Sciences 99, 346-353.
[3] S.P. Chen, C.C. Chang, J.J. Liu, C.C.K. Chou, J.S. Chang, J.L. Wang (2014) Recent improvement in air quality as evidenced by the island-wide monitoring network in Taiwan. Atmospheric environment 96, 70-77.
[4] T.M. Fu, H. Tian (2019) Climate Change Penalty to Ozone Air Quality: Review of Current Understandings and Knowledge Gaps. Current Pollution Reports 5, 159-171.
[5] A. Ayala, M. Brauer, J. L. Mauderly, J. M. Samet (2012) Air pollutants and sources associated with health effects. Air Quality, Atmosphere & Health 5, 151-167.
[6] P. Carlier, H. Hannachi, G. Mouvier (1986) The chemistry of carbonyl compounds in the atmosphere—A review. Atmospheric Environment 20, 2079-2099.
[7] R. Atkinson (1990) Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment. Part A. General Topics 24, 1-41.
[8] R. Atkinson (2000) Atmospheric chemistry of VOCs and NOx. Atmospheric Environment 34, 2063-2101.
[9] U.S. EPA, what is the definition of VOC?
https://www.epa.gov/air-emissions-inventories/what-definition-voc
[11 Apr. 2022]
[10] A. Guenther, C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay (1995) A global model of natural volatile organic compound emissions. Journal of Geophysical Research: Atmospheres 100, 8873-8892.
[11] V.G. Khamaganov, R.A. Hites (2001) Rate Constants for the Gas-Phase Reactions of Ozone with Isoprene, α-and β-Pinene, and Limonene as a Function of Temperature. The Journal of Physical Chemistry A 105, 815-822.
[12] S.N. Pandis, S.E. Paulson, J.H. Seinfeld, R.C. Flagan (1991) Aerosol formation in the photooxidation of isoprene and β-pinene. Atmospheric Environment. Part A. General Topics 25, 997-1008.
[13] K.J. Gill, R.A. Hites (2002) Rate constants for the gas-phase reactions of the hydroxyl radical with isoprene, α-and β-pinene, and limonene as a function of temperature. The Journal of Physical Chemistry A 106, 2538-2544.
[14] M. Placet, C. Mann, R. Gilbert, M. Niefer (2000) Emissions of ozone precursors from stationary sources: a critical review. Atmospheric Environment 34, 2183-2204.
[15] R.F. Sawyer, R.A. Harley, S.H. Cadle, J.M. Norbeck, R. Slott, H. Bravo (2000) Mobile sources critical review: 1998 NARSTO assessment. Atmospheric Environment 34, 2161-2181.
[16] 空氣污染防制法,行政院環境保護署,1975。
[17] W.P. Carter (2009) Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications. California Air Resources Board Contract 7, 339.
[18] U.S.EPA. Photochemical Assessment Monitoring Stations (PAMS) Volatile Organic Compound Target List .
https://www.epa.gov/amtic/photochemical-assessment-monitoring-stations-pams. [17 Feb. 2022]
[19] D.H. Tsai, J.L. Wang, C.H. Wang, C.C. Chan (2008) A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. Journal of Environmental Monitoring 10, 109-118.
[20] 行政院環境保護署,光化背景介紹- 空氣品質監測網。https://airtw.epa.gov.tw/cht/TaskMonitoring/Photochemical/PhotochemicalBack.aspx. [12 July. 2022]
[21] 行政院環境保護署,特殊性工業區空氣品質監測管制資訊網 - 歷年監測資料下載。
https://aqmsopen.epa.gov.tw/QueryPage/YearsData.aspx.
[12 July. 2022]
[22] 醛、酮類化合物製造及使用工廠作業勞工暴露評估研究,勞動部勞動及職業安全衛生研究所,2014。
[23] 甲醛安全資料表,勞動部職業安全衛生署,2015。
[24] 乙醛安全資料表,勞動部職業安全衛生署,2015。
[25] D.J. Lary, D.E. Shallcross (2000) Central role of carbonyl compounds in atmospheric chemistry. Journal of Geophysical Research: Atmospheres 105, 19771-19778.
[26] D.J. Luecken, S.L. Napelenok, M. Strum, R. Scheffe, S. Phillips (2018) Sensitivity of Ambient Atmospheric Formaldehyde and Ozone to Precursor Species and Source Types Across the United States. Environmental Science & Technology 52, 4668-4675.
[27] 行政院環境保護署,特殊性工業區空氣品質監測管制資訊網 - 空氣品質監測規定。https://aqmsopen.epa.gov.tw/InfoPage/Rule.aspx.
[12 July. 2022]
[28] S.P. Chen, Y.C. Su, C.J. Chiu, C.H. Lin, J. S. Chang, C.C. Chang, J.L. Wang (2015) Inter-comparison of network measurements of non-methane organic compounds with model simulations. Atmospheric Environment 122, 94-102.
[29] Z. Yao, X. Shen, Y. Ye, X. Cao, X. Jiang, Y. Zhang, K. He (2015) On-road emission characteristics of VOCs from diesel trucks in Beijing, China. Atmospheric Environment 103, 87-93.
[30] S.A. Batterman, G.Z. Zhang, M. Baumann (1998) Analysis and stability of aldehydes and terpenes in electropolished canisters. Atmospheric Environment 32, 1647-1655.
[31] 行政院環保署環境檢驗所,空氣中氣態之醛類化合物檢驗方法-以DNPH衍生化之高效能液相層析測定法(NIEA A705.12C),2016。
[32] U.S. EPA. (1984) Toxic Organics-5 (TO-5):Method for The Determination of Aldehydes and Ketones in Ambient Air Using High Performance Liquid Chromatography (HPLC).
[33] U.S. EPA. (1998) Toxic Organics-11A (TO-11A):Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC).
[34] R.R. Arnts, S.B. Tejada (1989) 2, 4-Dinitrophenylhydrazine-coated silica gel cartridge method for determination of formaldehyde in air: identification of an ozone interference. Environmental science & technology 23, 1428-1430.
[35] 周界空氣中醛酮類有害空氣污染物調查技術(吸附匣與吸收液)比對計畫,行政院環保署環境檢驗所委託研究,2019。
[36] 中國環境保護部,環境空氣醛、酮類化合物的測定高效液相色譜法(HJ683-2014),2014。
[37] 中國環境保護部,環境空氣醛酮類化合物的測定溶液吸收-高校液相色譜法(HJ1154-2020),2020。
[38] 日本環境省,手動的醛類測定方式(HPLC),2015。
[39] U.S. EPA. (2020) Quality Assurance Project Plan for the Photochemical Assessment Monitoring Stations (PAMS) Required Site Network for Speciated Volatile Organic Compounds, Carbonyls, and Meteorological Parameters Including Mixing Layer Height.
[40] 行政院環保署環境檢驗所,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法(NIEA A505.12B),2013。
[41] 王介亨、王家麟 (2005),環境中揮發性有機物質監測儀器,科儀新知,第二十六卷第五期,24-37。
[42] L. Zhu, D. Shen, K.H. Luo (2020) A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of hazardous materials 389, 122102.
[43] X. Yang, H. Yi, X. Tang, S. Zhao, Z. Yang, Y. Ma, T. Feng, X. Cui (2018) Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure. Journal of Environmental Sciences 67, 104-114.
[44] X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li (2017) Adsorption of VOCs onto engineered carbon materials: A review. Journal of hazardous materials 338, 102-123.
[45] X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology 235, 116213.
[46] S. Bhattacharya, S.K. Samanta (2016) Soft-nanocomposites of nanoparticles and nanocarbons with supramolecular and polymer gels and their applications. Chemical reviews 116, 11967-12028.
[47] A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort (2015) Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 44, 6804-6849.
[48] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp (2012) Metal–organic framework materials as chemical sensors. Chemical reviews 112, 1105-1125.
[49] J.R. Li, J. Sculley, H.C. Zhou (2012) Metal–organic frameworks for separations. Chemical reviews 112, 869-932.
[50] R.B. Lin, S. Xiang, W. Zhou, B. Chen (2020) Microporous metal-organic framework materials for gas separation. Chem 6, 337-363.
[51] K. Vikrant, M. Cho, A. Khan, K.H. Kim, W.S. Ahn, E.E. Kwon (2019) Adsorption properties of advanced functional materials against gaseous formaldehyde. Environmental research 178, 108672.
[52] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials 9, 172-178.
[53] D. Zou, D. Liu (2019) Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry 12, 139-165.
[54] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society 130, 13850-13851.
[55] G.C. Shearer, S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, K. P. Lillerud (2014) Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chemistry of Materials 26, 4068-4071.
[56] J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y.G. Huang, K.S. Walton (2013) Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4 (OH)4 secondary building unit. Journal of Materials Chemistry A 1, 5642-5650.
[57] 環境檢驗方法偵測極限測定指引(NIEA-PA107),行政院環境保護署環境檢驗所,2005。
[58] 熊思媛,碩士論文,以PFPH衍生試劑搭配氣相層析質譜儀檢測大氣中醛酮化合物,化學學系,國立中央大學,2011。
[59] 行政院環保署環境檢驗所,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜(NIEA A715.16B),2021。
[60] S.S.H. Ho, J.C. Chow, J.G. Watson, H.S.S. Ip, K.F. Ho, W.T. Dai, J. Cao (2014) Biases in ketone measurements using DNPH-coated solid sorbent cartridges. Analytical Methods 6, 967-974.
[61] 經濟部工業局,經濟部工業局仁大工業區服務中心-園區簡介。https://www.moeaidb.gov.tw/iphw/renda/index.do?id=10.
[12 July.2022]
[62] 席亞媞,碩士論文,台灣中部鹿林大氣背景站(LABS)空氣中醛酮類化合物的表徵,化學學系,國立中央大學,2021。
[63] R. Derwent, M. Jenkin (1991) Hydrocarbons and the long-range transport of ozone and PAN across Europe. Atmospheric Environment. Part A. General Topics 25, 1661-1678.
[64] M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials 22, 6632-6640.
[65] 吳征戰,碩士論文,探討不同官能基在金屬有機骨架材料上的配位基對UiO-66在硝酸水相合成的影響,2016。
[66] 羅聖全,科學基礎之重要利器-掃描式電子顯微鏡(SEM),科學研習,台灣中央大學,2013。
[67] 李冠均,碩士論文,自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機污染物,2020。
[68] 曾柏勝,碩士論文,自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析,2021。
[69] M.H. Stenzel (1993) Remove organics by activated carbon adsorption. Chemical Engineering Progress;(United States) 89, 4.
[70] B. Zdravkov, J. Čermák, M. Šefara, J. Janků (2007) Pore classification in the characterization of porous materials: A perspective. Open Chemistry 5, 385-395.
[71] T.M. Wu, G.R. Wu, H.M. Kao, J.L. Wang (2006) Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of Chromatography A 1105, 168-175.
[72] L. Feng, S. Yuan, L.L. Zhang, K. Tan, J.L. Li, A. Kirchon, L.M. Liu, P. Zhang, Y. Han, Y.J. Chabal (2018) Creating hierarchical pores by controlled linker thermolysis in multivariate metal–organic frameworks. Journal of the American Chemical Society 140, 2363-2372.
[73] Y. Li, J. Kim, J. Wang, N.L. Liu, Y. Bando, A.A. Alshehri, Y. Yamauchi, C.H. Hou, K.C.W. Wu (2018) High performance capacitive deionization using modified ZIF-8-derived, N-doped porous carbon with improved conductivity. Nanoscale 10, 14852-14859.
[74] Agilent, Agilent MassHunter Workstation Software Quantitative Analysis.
https://www.agilent.com/cs/library/usermanuals/public/G3335-90000%20QuantitationDataSet.pdf.
[75] M. Martínez-Carmona, Y.K. Gun’ko, M. Vallet-Regí (2018) Mesoporous silica materials as drug delivery:“The Nightmare” of bacterial infection. Pharmaceutics 10, 279.
[76] 吳東明,碩士論文,中孔徑矽分子篩與微孔徑碳分子篩使用於VOC線上濃縮之吸附性比較,2005。
指導教授 王家麟 劉文治(Jia-Lin Wang Wen-Tzu Liu) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明