博碩士論文 109223048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.149.29.95
姓名 袁文緯(Wen-Wei Yuan)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Enhanced Development of Potential Ruthenium-based Dyes for Dye-Sensitized Solar Cells by Machine Learning)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-16以後開放)
摘要(中) 染料敏化太陽能電池 (DSSCs) 是一種新興的光伏技術,由於其具有低成本、靈活性和良好的穩定性等優點而得到了廣泛的研究。染料敏化劑在DSSCs中起著關鍵的作用,然而,由於DSSCs的複雜結構以及缺乏可靠和可理解的定量(分子和電子)結構-性質關係,設計出最佳效率的敏化劑的仍然是一個挑戰。而機器學習 (ML) 已成為一種很有前途的方法,可以通過識別大數據中的相關性進行自動學習,從而加速新材料的開發。在本研究中,我們開發了預測 N3 系列釕染料 PCE 值的 ML 模型,旨在幫助和加速N3系列釕染料的優化。因此為ML訓練集收集了118個N3系列釕染料,利用密度泛函理論(DFT)和時間相關 DFT 計算基態和激發態的 46 個分子和電子性質,作為開發預測 ML 模型的分子描述 子, 採用卷積神經網絡(CNN)、輕量化梯度提升機(LightGBM)和人工神經網絡(ANN)三種 ML 演算法進行模型訓練, 優化的 ML 模型用於預測 93 種不同框架(包括非N3染料) 的釕染料,這些染料未包含在訓練數據集中。預測結果 表明,我們的 ML 模型可以區分具有不同效率(從低到高)的染料。這種 ML 模 型的可用於導出設計出具潛力的釕染料的化學規則,並且還可以用於快速且有效 地虛擬篩選大量新設計的染料。
摘要(英) Dye-sensitized solar cells (DSSCs) are emerging photovoltaic technologies that have been extensively studied due to their low cost, flexibility, and stability. Sensitizers play a key role in DSSCs; design of an optimal sensitizer is challenge due to the complex architecture of DSSCs and the lack of a reliable and understandable quantitative (molecular- and electronic-) structure–property relationship. Herein, we develop a predictive and accurate ML model for PCE of Ru-dyes aimed to assist and accelerate the optimization of Ru-dyes for DSSC applications. 118 N3-series Ru dyes were collected for the ML training set. DFT and time-dependent DFT were employed to calculate 46 molecular and electronic properties at the ground and excited states as the molecular descriptors for developing predictive ML models. Three ML algorithms, light gradient boosting machine (LightGBM), artificial neural network (ANN), and convolutional neural network (CNN) were employed for model learners. The trained and optimized ML models were used to predict 93 Ru-dyes (unseen molecules) with different frameworks (including non-N3 dyes). The prediction results showed that our ML models can distinguish dyes with low-to-high efficiencies. The interpretability of such ML model is used to derive chemical rules for designing the potential Ru-dyes and further can be used to rapidly and effectively virtual screen a large number of newly designed dyes to discover promising dyes for practical DSSCs applications.
關鍵字(中) ★ 染料敏化太陽能電池 關鍵字(英) ★ Dye-Sensitized Solar Cells
論文目次 摘要...I
Abstract...II
Contents...Ⅲ
List of Figures...IV
List of Tables...Ⅴ
Chapter 1—Introduction...1
Chapter 2—Computational Methods...7
Chapter 3—Results and Discussion...17
Chapter 4—Conclusions...49
Supporting Information...52
References...102
參考文獻 1. O′Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
2. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale research letters 2018, 13 (1), 381.
3. Rezvani, M.; Darvish Ganji, M.; Jameh-Bozorghi, S.; Niazi, A., DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells. Spectrochim Acta A Mol Biomol Spectrosc 2018, 194, 57-66.
4. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
5. Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells.
Angewandte Chemie International Edition 2006, 45 (35), 5822-5825.
6. Feng, J.; Wang, H.; Ji, Y.; Li, Y., Molecular design and performance improvement in organic solar cells guided by high‐throughput screening and machine learning. Nano Select 2021, 2 (9), 1629-1641.
7. Yin, J.-F.; Velayudham, M.; Bhattacharya, D.; Lin, H.-C.; Lu, K.-L., Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells – A goal toward a “bright” future. Coordination Chemistry Reviews 2012, 256 (23-24), 3008-3035.
8. Pashaei, B.; Shahroosvand, H.; Graetzel, M.; Nazeeruddin, M. K., Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chem Rev 2016, 116 (16), 9485-564.
9. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
10. Lu, T.-F.; Li, W.; Bai, F.-Q.; Jia, R.; Chen, J.; Zhang, H.-X., Anionic ancillary ligands in cyclometalated Ru(ii) complex sensitizers improve photovoltaic efficiency of dye-sensitized solar cells: insights from theoretical investigations.
Journal of Materials Chemistry A 2017, 5 (30), 15567-15577.
11. Fuke, N.; Hoch, L. B.; Koposov, A. Y.; Manner, V. W.; Werder, D. J.;103
12. Chiu, C. C.; Sheng, Y. C.; Lin, W. J.; Juwita, R.; Tan, C. J.; Tsai, H. G., Effects of Internal Electron-Withdrawing Moieties in D-A-pi-A Organic Sensitizers on Photophysical Properties for DSSCs: A Computational Study. ACS Omega 2018, 3 (1), 433-445.
13. O′Boyle, N. M.; Tenderholt, A. L.; Langner, K. M., cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 2008, 29 (5), 839-45.
14. Katoh, R., Quantitative evaluation of electron injection efficiency in dye-sensitized TiO(2) films. Ambio 2012, 41 Suppl 2 (Suppl 2), 143-8.
15. Marcus, R. A., On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I. The Journal of Chemical Physics 1956, 24 (5), 966-978.
16. Zhang, Z.-L.; Zou, L.-Y.; Ren, A.-M.; Liu, Y.-F.; Feng, J.-K.; Sun, C.-C., Theoretical studies on the electronic structures and optical properties of star-shaped triazatruxene/heterofluorene co-polymers. Dyes and Pigments 2013, 96 (2), 349-363.
17. López-Estrada, O.; Laguna, H. G.; Barrueta-Flores, C.; Amador-Bedolla, C., Reassessment of the Four-Point Approach to the Electron-Transfer Marcus–Hush Theory. ACS Omega 2018, 3 (2), 2130-2140.
18. Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society 1983, 105 (26), 7512-7516.
19. Chaitanya, K.; Ju, X.-H.; Heron, B. M., Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Advances 2014, 4 (51), 26621-26634.
20. Bredas, J.-L., Mind the gap! Materials Horizons 2014, 1 (1), 17-19.
21. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity index. Chem Rev 2006, 106 (6), 2065-91.
22. Kokalj, A.; Xie, C.; Milošev, I.; Crespo, D., How relevant are molecular electronic parameters for predicting corrosion inhibition efficiency: imidazoles as corrosion inhibitors of Cu/Zr materials in NaCl solution. Corrosion Science 2021, 193.
23. Kokalj, A., On the HSAB based estimate of charge transfer between adsorbates and metal surfaces. Chemical Physics 2012, 393 (1), 1-12.
24. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of light to electricity by cis-X2bis (2, 2′-bipyridyl-4, 4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
25. Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P., Energy Environ.
Sci., 2013, 6, 2944–2949;(d) Y. Shirota. J. Mater. Chem 2005, 15, 75.
26. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Lagref, J. J.; Liska, P.; Comte, P.; Barolo, C.; Viscardi, G.; Schenk, K.; Graetzel, M., Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell.
Coordination Chemistry Reviews 2004, 248 (13), 1317-1328.
27. Han, W.-S.; Han, J.-K.; Kim, H.-Y.; Choi, M. J.; Kang, Y.-S.; Pac, C.; Kang, S. O., Electronic optimization of heteroleptic Ru (II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells. Inorganic chemistry 2011, 50 (8), 3271-3280.
28. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry‐Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M. K.; Grätzel, M., Stable new sensitizer with improved light harvesting for nanocrystalline dye‐sensitized solar cells. Advanced Materials 2004, 16 (20), 1806-1811.
29. Lu, S.; Wu, T.; Ren, B.; Geng, R., Highly efficient dye sensitized solar cells based on a novel ruthenium sensitizer. Journal of Materials Science: Materials in Electronics 2013, 24 (7), 2346-2350.
30. Nazeeruddin, M. K.; Wang, Q.; Cevey, L.; Aranyos, V.; Liska, P.; Figgemeier, E.; Klein, C.; Hirata, N.; Koops, S.; Haque, S. A., DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. Inorganic Chemistry 2006, 45 (2), 787-797.
31. Klein, C.; Nazeeruddin, M. K.; Di Censo, D.; Liska, P.; Grätzel, M., Amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cells.
Inorganic Chemistry 2004, 43 (14), 4216-4226.
32. Hallett, A. J.; Jones, J. E., Purification-free synthesis of a highly efficient ruthenium dye complex for dye-sensitised solar cells (DSSCs). Dalton Transactions 2011, 40 (15), 3871-3876.
33. Matar, F.; Ghaddar, T. H.; Walley, K.; DosSantos, T.; Durrant, J. R.; O′Regan, B., A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye to beat’for 17 years. Journal of Materials Chemistry 2008, 18 (36), 4246-4253.
34. Kuang, D.; Klein, C.; Snaith, H. J.; Moser, J.-E.; Humphry-Baker, R.;105 Comte, P.; Zakeeruddin, S. M.; Grätzel, M., Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano Letters 2006, 6 (4), 769-773.
35. Kuang, D.; Klein, C.; Ito, S.; Moser, J. E.; Humphry ‐ Baker, R.; Zakeeruddin, S. M.; Graetzel, M., High molar extinction coefficient ion ‐ coordinating ruthenium sensitizer for efficient and stable mesoscopic dye‐sensitized solar cells. Advanced Functional Materials 2007, 17 (1), 154-160.
36. Lu, N.; Shing, J.-S.; Tu, W.-H.; Hsu, Y.-C.; Lin, J. T., Novel fluorous amphiphilic heteroleptic Ru-based complexes for a dye-sensitized solar cell: the first fluorous bis-ponytailed amphiphilic Ru complexes. Inorganic Chemistry 2011, 50 (10), 4289-4294.
37. Lee, C.; Yum, J.-H.; Choi, H.; Ook Kang, S.; Ko, J.; Humphry-Baker, R.; Grätzel, M.; Nazeeruddin, M. K., Phenomenally High Molar Extinction Coefficient Sensitizer with “Donor−Acceptor” Ligands for Dye-Sensitized Solar Cell Applications. Inorganic Chemistry 2008, 47 (7), 2267-2273.
38. Yum, J.-H.; Jung, I.; Baik, C.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., High efficient donor–acceptor ruthenium complex for dye-sensitized solar cell applications. Energy & Environmental Science 2009, 2 (1), 100-102.
39. Jang, S.-R.; Lee, C.; Choi, H.; Ko, J. J.; Lee, J.; Vittal, R.; Kim, K.-J., Oligophenylenevinylene-Functionalized Ru(II)-bipyridine Sensitizers for Efficient Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Chemistry of Materials 2006, 18 (23), 5604-5608.
40. Jiang, K.-J.; Masaki, N.; Xia, J.-b.; Noda, S.; Yanagida, S., A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chemical Communications 2006, (23), 2460-2462.
41. Chen, C. Y.; Wu, S. J.; Li, J. Y.; Wu, C. G.; Chen, J. G.; Ho, K. C., A New Route to Enhance the Light-Harvesting Capability of Ruthenium Complexes for Dye-Sensitized Solar Cells. Advanced Materials 2007, 19 (22), 3888-3891.
42. Abbotto, A.; Barolo, C.; Bellotto, L.; Angelis, F. D.; Grätzel, M.; Manfredi, N.; Marinzi, C.; Fantacci, S.; Yum, J.-H.; Nazeeruddin, M. K., Electron-rich heteroaromatic conjugated bipyridine based ruthenium sensitizer for efficient dye-sensitized solar cells. Chemical Communications 2008, (42), 5318-5320.
43. Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., Highly Efficient Light-Harvesting Ruthenium106 Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano 2009, 3 (10), 3103-3109.
44. Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M., Enhance the Optical Absorptivity of Nanocrystalline TiO2 Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells.
Journal of the American Chemical Society 2008, 130 (32), 10720-10728.
45. Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M., A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chemical Communications 2008, (23), 2635-2637.
46. Yu, Q.; Liu, S.; Zhang, M.; Cai, N.; Wang, Y.; Wang, P., An Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells: The Effects of π-Conjugation Extension. The Journal of Physical Chemistry C 2009, 113 (32), 14559-14566.
47. Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P., Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. The Journal of Physical Chemistry C 2009, 113 (15), 6290-6297.
48. Sauvage, F.; Fischer, M. K. R.; Mishra, A.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Bäuerle, P.; Grätzel, M., A Dendritic Oligothiophene Ruthenium Sensitizer for Stable Dye-Sensitized Solar Cells. ChemSusChem 2009, 2 (8), 761-768.
49. Lv, X.; Wang, F.; Li, Y., Studies of an Extremely High Molar Extinction Coefficient Ruthenium Sensitizer in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2010, 2 (7), 1980-1986.
50. Kim, J.-J.; Lim, K.; Choi, H.; Fan, S.; Kang, M.-S.; Gao, G.; Kang, H. S.; Ko, J., New Efficient Ruthenium Sensitizers with Unsymmetrical Indeno[1,2-b]thiophene or a Fused Dithiophene Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry 2010, 49 (18), 8351-8357.
51. Choi, H.; Baik, C.; Kim, S.; Kang, M.-S.; Xu, X.; Kang, H. S.; Kang, S. O.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry 2008, 32 (12), 2233-2237.
52. Chen, C.-Y.; Chen, J.-G.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Ho, K.-C., Multifunctionalized Ruthenium-Based Supersensitizers for Highly Efficient Dye-Sensitized Solar Cells. Angewandte Chemie International Edition 2008, 47 (38), 7342-7345
53. Chen, C.-Y.; Pootrakulchote, N.; Wu, S.-J.; Wang, M.; Li, J.-Y.; Tsai, J.-H.; Wu, C.-G.; Zakeeruddin, S. M.; Grätzel, M., New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (48), 20752-20757.
54. Li, J.-Y.; Chen, C.-Y.; Chen, J.-G.; Tan, C.-J.; Lee, K.-M.; Wu, S.-J.; Tung, Y.-L.; Tsai, H.-H.; Ho, K.-C.; Wu, C.-G., Heteroleptic ruthenium antenna-dye for high-voltage dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (34), 7158-7164.
55. White, R. C.; Benedetti, J. E.; Gonçalves, A. D.; Romão, W.; Vaz, B. G.; Eberlin, M. N.; Correia, C. R. D.; De Paoli, M. A.; Nogueira, A. F., Synthesis, characterization and introduction of a new ion-coordinating ruthenium sensitizer dye in quasi-solid state TiO2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2011, 222 (1), 185-191.
56. Kong, F. T.; Dai, S. Y.; Wang, K. J., New Amphiphilic Polypyridyl Ruthenium (II) Sensitizer and Its Application in Dye‐Sensitized Solar Cells. Chinese Journal of Chemistry 2007, 25 (2), 168-171.
57. Sahin, C.; Tozlu, C.; Ocakoglu, K.; Zafer, C.; Varlikli, C.; Icli, S., Synthesis of an amphiphilic ruthenium complex with swallow-tail bipyridyl ligand and its application in nc-DSC. Inorganica Chimica Acta 2008, 361 (3), 671-676.
58. Song, H.-K.; Park, Y. H.; Han, C.-H.; Jee, J.-G., Synthesis of ruthenium complex and its application in dye-sensitized solar cells. Journal of Industrial and Engineering Chemistry 2009, 15 (1), 62-65.
59. Xu, J.; Wu, H.; Jia, X.; Zou, D., A dendron modified ruthenium complex: enhanced open circuit voltage in dye-sensitized solar cells. Chemical Communications 2012, 48 (63), 7793-7795.
60. Liu, K. Y.; Hsu, C. L.; Chang, S. H.; Chen, J. G.; Ho, K. C.; Lin, K. F., Synthesis and characterization of cross‐linkable ruthenium complex dye and its application on dye‐sensitized solar cells. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (2), 366-372.
61. Kopecky, A.; Liu, G.; Agushi, A.; Agrios, A. G.; Galoppini, E., Synthesis of bifunctional Ru complexes with 1, 2-dithiolane and carboxylate-substituted ligands. Tetrahedron 2014, 70 (36), 6271-6275.
62. Odling, G.; Chadwick, N.; Frost-Pennington, E.; Kumar, D. K.; Ivaturi, A.; Upadhyaya, H. M.; Robertson, N., A novel route to 4, 4′-disubstituted bipyridyl ligands in ruthenium complexes for dye-sensitized solar cells. Polyhedron 2015, 89, 45-48.
63. Bosiak, M. J.; Rakowiecki, M.; Wolan, A.; Szlachta, J.; Stanek, E.; Cycoń, D.; Skupień, K., Highly efficient benzodifuran based ruthenium sensitizers108 for thin-film dye-sensitized solar cells. Dyes and Pigments 2015, 121, 79-87.
64. Yao, Q.-H.; Huang, Y.-Y.; Song, L.-Q.; Zhang, B.-W.; Huang, C.-H.; Wang, Z.-S.; Li, F.-Y.; Zhao, X.-S., Structure and photoelectrochemical properties of ruthenium(II) polypyridyl complexes as sensitizers for nanocrystalline TiO2 electrodes. Solar Energy Materials and Solar Cells 2003, 77 (3), 319-330.
65. Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J.-E.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M., High Molar Extinction Coefficient Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2006, 128 (12), 4146-4154.
66. Karthikeyan, C. S.; Wietasch, H.; Thelakkat, M., Highly Efficient Solid-State Dye-Sensitized TiO2 Solar Cells Using Donor-Antenna Dyes Capable of Multistep Charge-Transfer Cascades. Advanced Materials 2007, 19 (8), 1091-1095.
67. Giribabu, L.; Vijay Kumar, C.; Rao, C. S.; Reddy, V. G.; Reddy, P. Y.; Chandrasekharam, M.; Soujanya, Y., High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells.
Energy & Environmental Science 2009, 2 (7), 770-773.
68. Chandrasekharam, M.; Srinivasarao, C.; Suresh, T.; Reddy, M. A.; Raghavender, M.; Rajkumar, G.; Srinivasu, M.; Reddy, P. Y., High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells. Journal of Chemical Sciences 2011, 123 (1), 37-46.
69. Jiang, K.-J.; Xia, J.-b.; Masaki, N.; Noda, S.; Yanagida, S., Efficient sensitization of nanocrystalline TiO2 films with high molar extinction coefficient ruthenium complex. Inorganica Chimica Acta 2008, 361 (3), 783-785.
70. Nonomura, K.; Xu, Y.; Marinado, T.; Hagberg, D. P.; Zhang, R.; Boschloo, G.; Sun, L.; Hagfeldt, A., The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group.
International Journal of Photoenergy 2009, 2009, 471828.
71. Willinger, K.; Fischer, K.; Kisselev, R.; Thelakkat, M., Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium (II) donor-antenna dyes. Journal of Materials Chemistry 2009, 19 (30), 5364-5376.
72. Kisserwan, H.; Ghaddar, T. H., Enhancement of photovoltaic performance of a novel dye,“T18”, with ketene thioacetal groups as electron donors for high efficiency dye-sensitized solar cells. Inorganica Chimica Acta 2010, 363 (11), 2409-2415.
73. Nguyen, H. M.; Vu, D. L.; Nguyen, D. N., Molecular engineering of carbazole functionalized ruthenium dyes for efficient dye-sensitized solar cells.109 Advances in Natural Sciences: Nanoscience and Nanotechnology 2011, 2 (4), 045009.
74. Kim, J.-J.; Yoon, J.; Kim, E. J.; Kim, B. R.; Yoon, Y.-J.; Kang, M., A New Ruthenium Sensitizer Containing Benzo [1, 9] quinolizino (acridin-2-yl) vinyl-2, 2′-bipyridine Ligand for Effective Nanocrystalline Dye-Sensitized Solar Cells. International Journal of Photoenergy 2011, 2012.
75. Hussain, M.; El-Shafei, A.; Islam, A.; Han, L., Structure–property relationship of extended π-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru (II) bipyridyl complexes for high efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (21), 8401-8408.
76. El-Shafei, A.; Hussain, M.; Islam, A.; Han, L., Structure–property relationship of hetero-aromatic-electron-donor antennas of polypyridyl Ru (II) complexes for high efficiency dye-sensitized solar cells. Progress in Photovoltaics: Research and Applications 2014, 22 (9), 958-969.
77. Cao, K.; Lu, J.; Cui, J.; Shen, Y.; Chen, W.; Alemu, G.; Wang, Z.; Yuan, H.; Xu, J.; Wang, M.; Cheng, Y., Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring triphenylamine donor antennas. Journal of Materials Chemistry A 2014, 2 (14), 4945-4953.
78. Wang, Q.; Wu, W.; Ho, C.-L.; Xue, L.; Lin, Z.; Li, H.; Lo, Y. H.; Wong, W.-Y., Ruthenium(II) Photosensitizers with Electron-Rich Diarylamino-Functionalized 2,2′-Bipyridines and Their Application in Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry 2014, 2014 (31), 5322-5330.
79. Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei, A., A comparative study of Ru(ii) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? Physical Chemistry Chemical Physics 2014, 16 (28), 14874-14881.
80. Chen, C.-Y.; Pootrakulchote, N.; Hung, T.-H.; Tan, C.-J.; Tsai, H.-H.; Zakeeruddin, S. M.; Wu, C.-G.; Grätzel, M., Ruthenium Sensitizer with Thienothiophene-Linked Carbazole Antennas in Conjunction with Liquid Electrolytes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2011, 115 (40), 20043-20050.
81. Ryu, T.-I.; Song, M.-K.; Lee, M.-J.; Jin, S.-H.; Kang, S.-W.; Lee, J.-Y.; Lee, J.-W.; Lee, C.-W.; Gal, Y.-S., Synthesis and photovoltaic properties of novel ruthenium (ii) sensitizers for dye-sensitized solar cell applications. Bulletin of the Korean Chemical Society 2009, 30 (10), 2329-2337.
82. Carballo, M. S.; Urbani, M.; Chandiran, A. K.; González-Rodríguez, D.; Vázquez, P.; Grätzel, M.; Nazeeruddin, M. K.; Torres, T., Branched and bulky substituted ruthenium sensitizers for dye-sensitized solar cells. Dalton Transactions 2014, 43 (40), 15085-15091.
83. Nguyen, H. M.; Nguyen, D. N.; Kim, N., Improved performance of dye-sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010, 1 (2), 025001.
84. Choi, J.; Nguyen, H. M.; Yoon, S.; Kim, N.; Oh, J.-W.; Kim, F. S., Triarylamine-Functionalized Ru Dyes with Different Conjugation Lengths for Highly Efficient Dye Sensitized Solar Cells. Molecular Crystals and Liquid Crystals 2014, 600 (1), 22-27.
85. Ganesh, T.; Nguyen, H.-M.; Mane, R. S.; Kim, N.; Shinde, D. V.; Bhande, S. S.; Naushad, M.; Hui, K. N.; Han, S. H., Promising ZnO-based DSSC performance using HMP molecular dyes of high extinction coefficients.
Dalton Transactions 2014, 43 (29), 11305-11308.
86. Chandrasekharam, M.; Rajkumar, G.; Rao, C. S.; Suresh, T.; Reddy, P.
Y.; Yum, J.-H.; Nazeeruddin, M. K.; Graetzel, M., A molecularly engineered fluorene-substituted Ru-complex for efficient mesoscopic dye-sensitized solar cells.
Advances in Natural Sciences: Nanoscience and Nanotechnology 2011, 2 (3), 035016.
87. Chandrasekharam, M.; Rajkumar, G.; Srinivasa Rao, C. H.; Suresh, T.; Reddy, P. Y.; Soujanya, Y., Ruthenium (II)-bipyridyl with extended π-system: Improved thermo-stable sensitizer for efficient and long-term durable dye sensitized solar cells. Journal of Chemical Sciences 2011, 123 (5), 555-565.
88. Chandrasekharam, M.; Rajkumar, G.; Rao, C. S.; Suresh, T.; Reddy, M.
A.; Reddy, P. Y.; Soujanya, Y.; Takeru, B.; Jun-Ho, Y.; Nazeeruddin, M. K., Polypyridyl Ru (II)-sensitizers with extended π-system enhances the performance of dye sensitized solar cells. Synthetic Metals 2011, 161 (11-12), 1098-1104.
89. Fan, S.-Q.; Kim, C.; Fang, B.; Liao, K.-X.; Yang, G.-J.; Li, C.-J.; Kim, J.-J.; Ko, J., Improved efficiency of over 10% in dye-sensitized solar cells with a ruthenium complex and an organic dye heterogeneously positioning on a single TiO2 electrode. The Journal of Physical Chemistry C 2011, 115 (15), 7747-7754.
90. Yen, Y. S.; Chen, Y. C.; Hsu, Y. C.; Chou, H. H.; Lin, J. T.; Yin, D. J., Heteroleptic Ruthenium Sensitizers That Contain an Ancillary Bipyridine Ligand Tethered with Hydrocarbon Chains for Efficient Dye ‐ Sensitized Solar Cells.
Chemistry–A European Journal 2011, 17 (24), 6781-6788.
91. Chandrasekharam, M.; Rajkumar, G.; Rao, C. S.; Suresh, T.; Reddy, P. Y.,111 Phenothiazine conjugated bipyridine as ancillary ligand in Ru (II)-complexes for application in dye sensitized solar cell. Synthetic Metals 2011, 161 (15-16), 1469-1476.
92. El-Shafei, A.; Hussain, M.; Atiq, A.; Islam, A.; Han, L., A novel carbazole-based dye outperformed the benchmark dye N719 for high efficiency dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry 2012, 22 (45), 24048-24056.
93. Cheema, H.; Islam, A.; Han, L.; Gautam, B.; Younts, R.; Gundogdu, K.; El-Shafei, A., Influence of mono versus bis-electron-donor ancillary ligands in heteroleptic Ru (ii) bipyridyl complexes on electron injection from the first excited singlet and triplet states in dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2 (34), 14228-14235.
94. Stengel, I.; Pootrakulchote, N.; Dykeman, R. R.; Mishra, A.; Zakeeruddin, S. M.; Dyson, P. J.; Grätzel, M.; Bäuerle, P., Click‐Functionalized Ru (II) Complexes for Dye‐Sensitized Solar Cells. Advanced Energy Materials 2012, 2 (8), 1004-1012.
95. Chandrasekharam, M.; Rajkumar, G.; Suresh, T.; YellaReddy, P., Substitution of Ethynyl-Thiophene Chromophores on Ruthenium Sensitizers: Influence on Thermal and Photovoltaic Performance of Dye-Sensitized Solar Cells.
Advances in OptoElectronics 2012.
96. Chandrasekharam, M.; Suresh, T.; Singh, S. P.; Priyanka, B.; Bhanuprakash, K.; Islam, A.; Han, L.; Kantam, M. L., Functionalized styryl bipyridine as a superior chelate for a ruthenium sensitizer in dye sensitized solar cells. Dalton Transactions 2012, 41 (29), 8770-8772.
97. Suresh, T.; Rajkumar, G.; Singh, S. P.; Reddy, P. Y.; Islam, A.; Han, L.; Chandrasekharam, M., Novel ruthenium sensitizer with multiple butadiene equivalent thienyls as conjugation on ancillary ligand for dye-sensitized solar cells.
Organic Electronics 2013, 14 (9), 2243-2248.
98. Lobello, M. G.; Wu, K.-L.; Reddy, M. A.; Marotta, G.; Grätzel, M.; Nazeeruddin, M. K.; Chi, Y.; Chandrasekharam, M.; Vitillaro, G.; De Angelis, F., Engineering of Ru (II) dyes for interfacial and light-harvesting optimization.
Dalton Transactions 2014, 43 (7), 2726-2732.
99. Onozawa-Komatsuzaki, N.; Kitao, O.; Yanagida, M.; Himeda, Y.; Sugihara, H.; Kasuga, K., Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO 2 solar cells. New Journal of Chemistry 2006, 30 (5), 689-697.
100. Reynal, A.; Forneli, A.; Martinez-Ferrero, E.; Sanchez-Diaz, A.; Vidal-Ferran, A.; Palomares, E., A Phenanthroline Heteroleptic Ruthenium Complex112 and Its Application to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry 2008, 2008 (12), 1955-1958.
101. Reynal, A.; Forneli, A.; Martinez-Ferrero, E.; Sánchez-Díaz, A.; Vidal-Ferran, A.; O’Regan, B. C.; Palomares, E., Interfacial charge recombination between e−− TiO2 and the I−/I3− electrolyte in ruthenium heteroleptic complexes: dye molecular structure− open circuit voltage relationship. Journal of the American Chemical Society 2008, 130 (41), 13558-13567.
102. Chen, C. Y.; Lu, H. C.; Wu, C. G.; Chen, J. G.; Ho, K. C., New ruthenium complexes containing oligoalkylthiophene‐substituted 1, 10‐phenanthroline for nanocrystalline dye‐sensitized solar cells. Advanced Functional Materials 2007, 17 (1), 29-36.
103. Li, X.; Gui, J.; Yang, H.; Wu, W.; Li, F.; Tian, H.; Huang, C., A new carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell. Inorganica Chimica Acta 2008, 361 (9-10), 2835-2840.
104. Yin, J.-F.; Bhattacharya, D.; Hsu, Y.-C.; Tsai, C.-C.; Lu, K.-L.; Lin, H.-C.; Chen, J.-G.; Ho, K.-C., Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2009, 19 (38), 7036-7042.
105. Yin, J.-F.; Chen, J.-G.; Lu, Z.-Z.; Ho, K.-C.; Lin, H.-C.; Lu, K.-L., Toward optimization of oligothiophene antennas: New ruthenium sensitizers with excellent performance for dye-sensitized solar cells. Chemistry of Materials 2010, 22 (15), 4392-4399.
106. Yin, J.-F.; Chen, J.-G.; Bhattacharya, D.; Hsu, Y.-C.; Lin, H.-C.; Ho, K.-C.; Lu, K.-L., Enhanced light-harvesting capability by phenothiazine in ruthenium sensitizers with superior photovoltaic performance. Journal of Materials Chemistry 2012, 22 (1), 130-139.
107. Fan, S.-H.; Zhang, A.-G.; Ju, C.-C.; Gao, L.-H.; Wang, K.-Z., A Triphenylamine-grafted imidazo [4, 5-f][1, 10] phenanthroline ruthenium (II) complex: Acid− base and photoelectric properties. Inorganic chemistry 2010, 49 (8), 3752-3763.
108. Wang, P.; Humphry-Baker, R.; Moser, J. E.; Zakeeruddin, S. M.; Grätzel, M., Amphiphilic polypyridyl ruthenium complexes with substituted 2, 2 ‘-dipyridylamine ligands for nanocrystalline dye-sensitized solar cells. Chemistry of materials 2004, 16 (17), 3246-3251.
109. Jin, Z.; Masuda, H.; Yamanaka, N.; Minami, M.; Nakamura, T.; Nishikitani, Y., Efficient electron transfer ruthenium sensitizers for dye-sensitized solar cells. The Journal of Physical Chemistry C 2009, 113 (6), 2618-2623.
110. Kim, J.-J.; Choi, H.; Kim, C.; Kang, M.-S.; Kang, H. S.; Ko, J., Novel113 amphiphilic ruthenium sensitizer with hydrophobic thiophene or thieno (3, 2-b) thiophene-substituted 2, 2′-dipyridylamine ligands for effective nanocrystalline dye sensitized solar cells. Chemistry of Materials 2009, 21 (24), 5719-5726.
111.Yanagida, M.; Singh, L. P.; Sayama, K.; Hara, K.; Katoh, R.; Islam, A.; Sugihara, H.; Arakawa, H.; Nazeeruddin, M. K.; Grätzel, M., A new efficient photosensitizer for nanocrystalline solar cells: synthesis and characterization of cis-bis (4, 7-dicarboxy-1, 10-phenanthroline) dithiocyanato ruthenium (II). Journal of the Chemical Society, Dalton Transactions 2000, (16), 2817-2822.
112. Islam, A.; Sugihara, H.; Singh, L. P.; Hara, K.; Katoh, R.; Nagawa, Y.; Yanagida, M.; Takahashi, Y.; Murata, S.; Arakawa, H., Synthesis and photophysical properties of ruthenium (II) charge transfer sensitizers containing 4, 4′-dicarboxy-2, 2′-biquinoline and 5, 8-dicarboxy-6, 7-dihydro-dibenzo [1, 10]-phenanthroline. Inorganica Chimica Acta 2001, 322 (1-2), 7-16.
113. Hsu, Y.-C.; Zheng, H.; Lin, J. T. s.; Ho, K.-C., On the structural variations of Ru (II) complexes for dye-sensitized solar cells. Solar energy materials and solar cells 2005, 87 (1-4), 357-367.
114. Klein, C.; Nazeeruddin, M. K.; Liska, P.; Di Censo, D.; Hirata, N.; Palomares, E.; Durrant, J. R.; Grätzel, M., Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. Inorganic Chemistry 2005, 44 (2), 178-180.
115. Mishra, A.; Pootrakulchote, N.; Fischer, M. K. R.; Klein, C.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Bäuerle, P.; Grätzel, M., Design and synthesis of a novel anchoring ligand for highly efficient thin film dye-sensitized solar cells. Chemical communications 2009, (46), 7146-7148.
116. Mishra, A.; Pootrakulchote, N.; Wang, M.; Moon, S. J.; Zakeeruddin, S.
M.; Grätzel, M.; Bäuerle, P., A Thiophene‐Based Anchoring Ligand and Its Heteroleptic Ru (II)‐Complex for Efficient Thin‐Film Dye‐Sensitized Solar Cells.
Advanced Functional Materials 2011, 21 (5), 963-970.
117. Huang, W.-K.; Cheng, C.-W.; Chang, S.-M.; Lee, Y.-P.; Diau, E. W.-G., Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chemical Communications 2010, 46 (47), 8992-8994.
118. She, Z.; Cheng, Y.; Zhang, L.; Li, X.; Wu, D.; Guo, Q.; Lan, J.; Wang, R.; You, J., Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (50), 27831-27837.
119. Müller, A. V.; de Oliveira, K. T.; Meyer, G. J.; Polo, A. S., Inhibiting Charge Recombination in cis-Ru(NCS)2 Diimine Sensitizers with Aromatic114 Substituents. ACS Applied Materials & Interfaces 2019, 11 (46), 43223-43234.
120. Ma, B.-B.; Peng, Y.-X.; Tao, T.; Huang, W., A distinguishable photovoltaic performance on dye-sensitized solar cells using ruthenium sensitizers with a pair of isomeric ancillary ligands. Dalton Transactions 2014, 43 (44), 16601-16604.
121. Ma, B.-B.; Peng, Y.-X.; Tao, T.; Geng, J.; Huang, W., Ruthenium sensitizers with various 2-thiophenimidazo[4,5-f][1,10]phenanthroline based ancillary ligands and their performance for dye-sensitized solar cells. Dyes and Pigments 2015, 117, 100-107.
122.Bessho, T.; Yoneda, E.; Yum, J.-H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications. Journal of the American Chemical Society 2009, 131 (16), 5930-5934.
123. Chen, W.-C.; Kong, F.-T.; Li, Z.-Q.; Pan, J.-H.; Liu, X.-P.; Guo, F.-L.; Zhou, L.; Huang, Y.; Yu, T.; Dai, S.-Y., Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (30), 19410-19417.
124. Chan, K. F.; Lim, H. N.; Ahmad, H.; Gowthaman, N. S. K., Photovoltaic performance of bipyridine and dipyridophenazine ligands anchored ruthenium complex sensitizers for efficient dye-sensitized solar cells. Solid State Sciences 2020, 107, 106368.
125. Karthikeyan, C. S.; Peter, K.; Wietasch, H.; Thelakkat, M., Highly efficient solid-state dye-sensitized TiO2 solar cells via control of retardation of recombination using novel donor-antenna dyes. Solar Energy Materials and Solar Cells 2007, 91 (5), 432-439.
126. Ocakoglu, K.; Harputlu, E.; Guloglu, P.; Erten-Ela, S., The photovoltaic performance of new ruthenium complexes in DSSCs based on nanorod ZnO electrode. Synthetic Metals 2012, 162 (23), 2125-2133.
127. Carvalho, F.; Liandra-Salvador, E.; Bettanin, F.; Souza, J. S.; Homem-de-Mello, P.; Polo, A. S., Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorganica Chimica Acta 2014, 414, 145-152.
128. Oh, H.; Kim, J.; Yun, S. H.; Lee, J.; Park, B.; Tak, J.; Kim, B. H., Synthesis of heteroleptic Ru(II) complexes ligated with 1,3-dihydro-1,1,3,3-tetramethyl-7,8-diazacyclopenta[1]phenanthren-2-one and application in dye-sensitized solar cells. Synthetic Metals 2014, 198, 260-266.
129. Li, X.; Gui, J.; Yang, H.; Wu, W.; Li, F.; Tian, H.; Huang, C., A new115 carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell. Inorganica Chimica Acta 2008, 361 (9), 2835-2840.
130. Wu, K.-L.; Hsu, H.-C.; Chen, K.; Chi, Y.; Chung, M.-W.; Liu, W.-H.; Chou, P.-T., Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells. Chemical Communications 2010, 46 (28), 5124-5126.
131. Singh, S. P.; Islam, A.; Yanagida, M.; Han, L., Development of a new class of thiocyanate-free cyclometalated ruthenium (II) complex for sensitizing nanocrystalline TiO2 solar cells. International Journal of Photoenergy 2011, 2011.
132. Dragonetti, C.; Valore, A.; Colombo, A.; Roberto, D.; Trifiletti, V.; Manfredi, N.; Salamone, M. M.; Ruffo, R.; Abbotto, A., A new thiocyanate-free cyclometallated ruthenium complex for dye-sensitized solar cells: Beneficial effects of substitution on the cyclometallated ligand. Journal of Organometallic Chemistry 2012, 714, 88-93.
133. Abbotto, A.; Coluccini, C.; Dell′Orto, E.; Manfredi, N.; Trifiletti, V.; Salamone, M. M.; Ruffo, R.; Acciarri, M.; Colombo, A.; Dragonetti, C., Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Transactions 2012, 41 (38), 11731-11738.
134. Siu, C.-H.; Ho, C.-L.; He, J.; Chen, T.; Cui, X.; Zhao, J.; Wong, W.-Y., Thiocyanate-free ruthenium (II) cyclometalated complexes containing uncommon thiazole and benzothiazole chromophores for dye-sensitized solar cells. Journal of Organometallic Chemistry 2013, 748, 75-83.
135. Li, C.-Y.; Su, C.; Wang, H.-H.; Kumaresan, P.; Hsu, C.-H.; Lee, I. T.; Chang, W.-C.; Tingare, Y. S.; Li, T.-Y.; Lin, C.-F., Design and development of cyclometalated ruthenium complexes containing thiophenyl-pyridine ligand for dye-sensitized solar cells. Dyes and Pigments 2014, 100, 57-65.
136. Huang, J.-F.; Liu, J.-M.; Su, P.-Y.; Chen, Y.-F.; Shen, Y.; Xiao, L.-M.; Kuang, D.-B.; Su, C.-Y., Highly efficient and stable cyclometalated ruthenium (II) complexes as sensitizers for dye-sensitized solar cells. Electrochimica Acta 2015, 174, 494-501.
137. Chen, K. S.; Liu, W. H.; Wang, Y. H.; Lai, C. H.; Chou, P. T.; Lee, G.
H.; Chen, K.; Chen, H. Y.; Chi, Y.; Tung, F. C., New Family of Ruthenium‐ Dye‐Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar‐Energy‐ Conversion Efficiency. Advanced Functional Materials 2007, 17 (15), 2964-2974.
138. Chen, K.; Hong, Y.-H.; Chi, Y.; Liu, W.-H.; Chen, B.-S.; Chou, P.-T., Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru (II) complexes to achieve superior solar conversion efficiency. Journal of Materials Chemistry 2009, 19 (30), 5329-5335.
139. Chen, B.-S.; Chen, K.; Hong, Y.-H.; Liu, W.-H.; Li, T.-H.; Lai, C.-H.; Chou, P.-T.; Chi, Y.; Lee, G.-H., Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance.
Chemical Communications 2009, (39), 5844-5846.
140. Vougioukalakis, G. C.; Konstantakou, M.; Pefkianakis, E. K.; Kabanakis, A. N.; Stergiopoulos, T.; Kontos, A. G.; Andreopoulou, A. K.; Kallitsis, J. K.; Falaras, P., A Ruthenium-Based Light-Harvesting Antenna Bearing an Anthracene Moiety in Dye-Sensitized Solar Cells. Asian Journal of Organic Chemistry 2014, 3 (9), 953-962.
141. Faiz, J.; Philippopoulos, A. I.; Kontos, A. G.; Falaras, P.; Pikramenou, Z., Functional Supramolecular Ruthenium Cyclodextrin Dyes for Nanocrystalline Solar Cells. Advanced Functional Materials 2007, 17 (1), 54-58.
142. Chou, C.-C.; Wu, K.-L.; Chi, Y.; Hu, W.-P.; Yu, S. J.; Lee, G.-H.; Lin, C.-L.; Chou, P.-T., Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Angewandte Chemie 2011, 123 (9), 2102-2106.
143. Robson, K. C. D.; Koivisto, B. D.; Yella, A.; Sporinova, B.; Nazeeruddin, M. K.; Baumgartner, T.; Grätzel, M.; Berlinguette, C. P., Design and Development of Functionalized Cyclometalated Ruthenium Chromophores for Light-Harvesting Applications. Inorganic Chemistry 2011, 50 (12), 5494-5508.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明