博碩士論文 109226004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.224.0.25
姓名 羅慶隆(Ching-Lung Luo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究
(Spectrally-resolved single-pixel reconstructed microscopy for two photon excitation fluorescence and Raman imaging)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中設計一款激發波長可調式的時域聚焦雙光子激發顯微鏡,利用掃描鏡、透鏡與光柵的搭配而實現激發波長可調的範圍為730至1000 nm,並使用數位微鏡裝置 (Digital Micromirror Device, DMD) 取代光柵以將單像素成像 (Single-Pixel Imaging, SPI) 引入系統,在實驗中透過模擬優化激發光源入射DMD的角度,使得全激發波長可以依照相同激發光路行進並達到最佳繞射效率。藉由此系統與光譜解析系統的結合,螢光染料分子都可使用其最佳激發波長進行激發,使得有最大雙光子激發效率,並從而獲取螢光光譜與光譜解析影像。在多光子激發螢光顯微術系統中,可以從多色螢光細胞中解析光譜影像,其中系統的光譜解析度可達到0.45 nm,且也利用螢光染料在不同環境中最大放射波長擁有偏移的特性,來量測螢光波長偏移量與溶液環境的關係。另也建構單像素成像之拉曼光譜系統結合,來量測循環腫瘤DNA (circulating tumor DNA, ctDNA) 之表面增強拉曼散射 (surface-enhanced Raman scattering, SERS) 影像,藉由此系統可以取得拉曼光譜並且解析各拉曼峰的光譜影像,其中系統的光譜解析度可達到1.41 cm-1,並藉由ctDNA於SERS基板上的拉曼訊號來分析SERS效應之空間分佈情形,以證實SERS基板的均勻增益特性。
摘要(英) In this thesis, we designed a temporal focusing two-photon excitation microscope with tunable excitation wavelength. The combination of scanning mirror, lenses, and grating realized the tunable excitation wavelength in the range of 730 to 1000 nm. A digital micro-mirror device (DMD) was adopted to replace the diffraction grating in the conventional temporal focusing two-photon excitation microscope for implementing single-pixel imaging (SPI) approach in the presented system. The angle of excitation light at the DMD was optimized according to the simulation result, so that the excitation light for the wavelength from 730 to 1000 nm can have the same excitation light path and achieve the optimal diffraction efficiency. All fluorescent molecules can be excited by their optimal excitation wavelength to have the maximum two-photon excitation efficiency. By combined with the spectrally-resolved detection system, fluorescence spectra and spectrally-resolved images of the specimens can be obtained. Spectrally-resolved images of multifluorophore-labeled cells through the multiphoton excitation fluorescence microscopy system demonstrated that the spectral resolution of the system could reach 0.45 nm. Moreover, the variation in the emission spectrum of fluorescent molecules in different environments was used to determine the relationship between the maximum emission wavelength and solvent environment. In addition, a single-pixel imaging Raman spectroscopy system was also constructed to measure the SERS images of circulating tumor DNA (ctDNA), through which the Raman spectrum and spectrally-resolved images of each Raman peak could be obtained with a spectral resolution of 1.41 cm-1. Finally, the spatial distribution of SERS effect was analyzed by the Raman signals of ctDNA on the SERS substrate to verify the uniform gain characteristics of SERS substrate.
關鍵字(中) ★ 單像素成像
★ 時域聚焦雙光子激發顯微鏡
★ 光譜解析
★ 拉曼光譜
★ 表面增強拉曼散射
★ 循環腫瘤DNA
關鍵字(英) ★ Single-pixel Imaging
★ Temporal Focusing Two-photon Excitation Microscope
★ Spectrally-resolved
★ Raman Spectrum
★ Surface-enhanced Raman Scattering
★ Circulating Tumor DNA
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-2-1 多光子激發螢光顯微術 3
1-2-2 拉曼掃描光譜 4
1-2-3 單像素成像技術之應用 5
1-3 研究動機 6
1-4 論文架構說明 7
第二章 基礎原理 8
2-1 多光子激發螢光光譜 8
2-2 時域聚焦多光子激發螢光影像 9
2-3 拉曼光譜學 10
2-4 單像素成像 10
2-5 軸向激發限制 11
2-6 影像相關係數 13
第三章 實驗方法與系統架構 16
3-1 單像素時域聚焦多光子激發螢光顯微術 16
3-2 單像素拉曼系統 22
3-3單像素重建影像之投影圖形 23
3-4深度學習架構 25
3-5樣品製備 27
第四章 實驗結果與分析 30
4-1 光譜解析單像素重建顯微術之解析度分析 30
4-1-1 空間解析度 30
4-1-2 光譜解析度 31
4-1-3 軸向激發限制 33
4-2 影像重建與光譜分析 36
4-2-1 細胞螢光光譜與影像 36
4-2-2 鹼基胸腺嘧啶(Thymine)拉曼量測光譜與影像 38
4-2-3 表面增強拉曼量測光譜與影像 39
4-3螢光變化之光譜解析 41
4-3-1螢光染料於不同環境下之分析 41
4-3-2活體細胞螢光變化之分析 43
4-4探討深度學習對影像重建之影響 45
4-5影像結構相似性分析 46
第五章 結論 47
參考文獻 49
參考文獻 1. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–139 (1988).
2. W. Denk, J. H. Strickler and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
3. D. Oron, E. Tal and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468-1476 (2005).
4. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun 7, 12010 (2016).
5. C.F. Higham, R. Murray-Smith, M. J. Padgett and M. P. Edgar, “Deep learning for real-time single-pixel video,” Sci. Rep. 8, 2369 (2018).
6. R. I. Stantchev, X. Yu, T. Blu and E. Pickwell-MacPherson, “Real-time terahertz imaging with a single-pixel detector,” Nat. Commun. 1–8 (2020).
7. J. Ma, “Single-pixel remote sensing,” IEEE Geoscience and Remote Sensing Letters 6(2), 199–203 (2009).
8. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3, 26–29 (2016).
9. N. Huynh, F. Lucka, E. Z. Zhang, M. M. Betcke, S. R. Arridge, P. C. Beard and B. T. Cox, “Single-pixel camera photoacoustic tomography,” J. Biomed. Opt. 24, 1 (2019).
10. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes and M. Dahan “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl Acad. Sci. USA 109, E1679–E1687 (2012).
11. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285–289 (2014).
12. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, J and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056–1059 (2016).
13. G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,’’ Biophys. J 76, 2412–2420 (1999).
14. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,’’ J. Microsc 181, 253–259 (1996).
15. R. Salomé, Y. Kremer, S. Dieudonne, J. F. Léger, O. Krichevsky, C. Wyart, D. Chatenay and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,’’ J. Neurosci. Methods 154, 161–174 (2006).
16. A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. S. Herrington, M. Mazilu and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
17. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,’’ Nat. 121, 501-502 (1928).
18. M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,’’ Curr. Opin. Biotechnol. 23, 56–63 (2012).
19. F. C. Chien, T. F. Zhang, C. Chen, T. A. N. Nguyen, S. Y. Wang, S. M. Lai, C. H. Lin, C. K. Huang, C. Y. Liu and K. Y. Lai, “Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots,” ACS Appl. Nano Mater. 4, 2614– 2620 (2021).
20. C. Scotté, H. B. de Aguiar, D. Marguet, E. M. Green, P. Bouzy, S. Vergnole, C. P. Winlove, N. Stone and H. Rigneault, “Assessment of compressive Raman versus hyperspectral Raman for microcalcification chemical imaging,” Anal. Chem. 90, 7197 (2018).
21. F. Soldevila, J. Dong, E. Tajahuerce, S. Gigan, and H. B. de Aguiar, “Fast compressive Raman bio-imaging via matrix completion,” Optica 6, 341 (2019).
22. J. V. Thompson, J. N. Bixler, B. H. Hokr, G. D. Noojin, M. O. Scully and V. V. Yakovlev, “Single-shot chemical detection and identification with compressed hyperspectral Raman imaging,” Opt. Lett. 42, 2169–2172 (2017).
23. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83 (2008).
24. Q. Pian, R. Yao, N. Sinsuebphon and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11, 411–414 (2017).
25. E. Papagiakoumou, E. Ronzitti and V. Emiliani, “Scanless two-photon excitation with temporal focusing,’’ Nat. Methods 17, 571-581 (2020).
26. C. H. Lien, C.Y. Lin, C. Y. Chang and F. C. Chien, “Simulation design of wide-field temporal-focusing multiphoton excitation with a tunable excitation wavelength,” OSA Continuum 2, 1174–1187 (2019).
27. S. Rizvi, J. Cao, K. Zhang and Q. Hao, “Deringing and denoising in extremely under-sampled Fourier single pixel imaging.’’ Opt. Express 28, 7360–7374 (2020).
28. I. Hoshi, T. Shimobaba, T. Kakue, and T. Ito, “Single-pixel imaging using a recurrent neural network combined with convolutional layers.’’ Opt. Express, 28, 34069-34078 (2020).
29. X. Yang, P. Jiang, M. Jiang, L. Xu, L. Wu, C. Yang, W. Zhang, J. Zhang and Y. Zhang, “High imaging quality of Fourier single pixel imaging based on generative adversarial networks at low sampling rate,” Opt. Laser. Eng. 140, 106533 (2021).
30. A. L. Mur, P. Leclerc, F. Peyrin and N. Ducros, “Single-pixel image reconstruction from experimental data using neural networks.’’ Opt. Express 29, 17097-17110 (2021).
31. L. Malavolta, E. F. Poletti, E. H. Silva, S. Schreier, C. R.Nakaie, “Application of Electron Paramagnetic Resonance Spectroscopy for Validation of the Novel (AN+DN) Solvent Polarity Scale,’’ Int. J. Mol. Sci. 9, 1321– 1332 (2008).
指導教授 簡汎清 賴昆佑 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明