以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:30 、訪客IP:3.147.86.216
姓名 楊宜儒(Yi-Ru Yang) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 利用中孔洞氧化矽材料摻雜向列型液晶製作電控散射型光閥
(Electrically switchable scattering mode light shutters based on mesoporous silica-doped nematic liquid crystals)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-6-30以後開放) 摘要(中) 本論文探討利用中孔洞氧化矽材料摻雜向列型液晶所製作之電控散射型液晶光閥的光電特性,內文主要分為三部分,第一部分為探討不同結構之中孔洞材料對液晶散射光閥之影響,藉由量測電壓-穿透度曲線以不同頻率之外加交流電場分別比較空心球型中孔洞氧化矽與中孔柱狀中孔洞氧化矽材料摻雜正型向列型液晶所製作之液晶散射光閥其穿透與散射態之能力。接著使用空心球型中孔洞氧化矽材料混合雙頻液晶製作液晶盒,並根據電壓-穿透度曲線之結果討論利用不同高/低頻率之外加交流電場控制其穿透與散射態之能力。根據上述實驗之結果可間接推論液晶散射光閥之操作原理。第二部分為探討有序與無序中孔柱狀中孔洞氧化矽材料摻雜正型向列型液晶對液晶散射光閥穿透度之影響。藉由1 kHz與10 Hz之外加交流電場量測其電壓-穿透度曲線,比較有序中孔柱狀中孔洞氧化矽與無序中孔柱狀中孔洞氧化矽摻雜正型向列型液晶之穿透與散射態效果。最後根據電壓-穿透度曲線之結果以及對液晶盒施加交流電場之實體目視圖討論摻雜不同濃度之有序與無序中孔柱狀中孔洞氧化矽材料對此液晶散射光閥之雙穩態效果。第三部分主要探討使用擴孔無序中孔柱狀中孔洞氧化矽材料摻雜正型向列型液晶對液晶散射光閥之影響,藉由量測電壓-穿透度曲線之結果,分析無序中孔柱狀中孔洞氧化矽與擴孔無序中孔柱狀中孔洞氧化矽摻雜正型向列型液晶之效果。接續上述實驗結果,將使用擴孔無序中孔柱狀中孔洞氧化矽摻雜正型液晶,分別討論(1)擴孔無序中孔柱狀中孔洞氧化矽摻雜不同正型液晶對其操作電壓與雙穩態效果之影響、(2)表面塗佈不同薄膜材料對液晶散射光閥之雙穩態效果、(3)擴孔無序中孔柱狀中孔洞氧化矽之摻雜濃度對其操作電壓與雙穩態效果之影響及(4)利用塗有PVA薄膜(無摩擦配向)之基板所製成的液晶盒對其記憶性與操作電壓之影響。 摘要(英) The research topics in this thesis, entitled electrically switchable scattering mode light shutters based on mesoporous silica-doped nematic liquid crystals, include three sections. The first one is to discuss the effects of mesoporous materials with different structures onto the liquid crystal (LC) scattering light shutters, fabricated by hollow sphere mesoporous silica (HSMS) and Santa Barbara Amorphous-15 (SBA15)-doped LCs individually. The performance of transmission and scattering states of the above scattering light shutters can be examined by the measurements of transmittance versus applied voltage curves. Then, the scattering mode light shutters made by HSMS doped into dual-frequency LCs are used to examine the effects of the applied AC electric fields with high/low frequencies onto the switch between transmission and scattering states. According to the results of the above experiments, the mechanisms of operating shch LC scattering mode light shutters can be deduced indirectly. The second part is to analyze the influences of ordered and disordered SBA15 doped into positive LCs on the transmittance of the obtained scattering mode light shutters. According to the results of the measured transmittance versus applied voltage (1 kHz and 10 Hz) curves, further comparisons of scattering mode light shutters between ordered and disordered SBA15 doped into positive LCs will be presented. Finally, according to the results of the obtained transmittance versus applied voltage curves and the visual observations of the LC cell applied with AC electric fields, the bistable effect of LCs doped with ordered and disordered SBA15 having different concentrations on the LC scattering mode light shutters is discussed. The third part mainly discusses the effect of positive LCs doped with hole-expanding disordered SBA15 on LC scattering mode light shutters. The results of transmittance versus applied voltage curves are used to analyze the effects of disordered SBA15 and hole-expanding disordered SBA15 doped into positive LCs individually. Based on the above experimental results, the following four topics, in which the employed materials include positive LCs doped with the hole-expanding disordered SBA15, will be discussed. The four topics are (1) the influences of hole-expanding disordered SBA15 doped into different positive LCs on its operating voltage and bistable effect; (2) the effect of different coated thin films on the bistability of LC scattering mode light shutters; (3) the influences of the doping concentration of the hole-expanding disordered SBA15 on its operating voltage and bistable effect; and (4) the effects of LCs cell made of two substrates coated with PVA (without rubbing processes) on the memory effect (bistability) and operating voltage. 關鍵字(中) ★ 中孔洞氧化矽材料
★ 散射光閥
★ 空心球型中孔洞氧化矽材料
★ 中孔洞氧化矽分子篩
★ 向列雙穩太
★ 雙穩態關鍵字(英) ★ mesoporous silica
★ scattering mode light shutter
★ HSMS
★ SBA-15
★ nematic liquid crystals
★ bistable effect論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xv
符號說明 xvi
第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 研究動機 - 1 -
1-3 文獻回顧 - 2 -
1-4 論文架構 - 5 -
第二章 液晶簡介 - 6 -
2-1 液晶發現 - 6 -
2-2 液晶定義 - 7 -
2-3 液晶分類 - 8 -
2-3-1盤狀液晶(Disc-Like LCs) - 9 -
2-3-2棒狀液晶(Rod-Like LCs) - 9 -
2-4液晶特性 - 15 -
2-4-1秩序參數[22] - 16 -
2-4-2溫度對液晶的影響 - 17 -
2-4-3光學異向性[23] - 17 -
2-4-4介電異向性[25] - 22 -
2-4-5連續彈性體理論 - 23 -
第三章 實驗原理 - 25 -
3-1 中孔洞材料[27] - 25 -
3-2 散射原理 - 26 -
3-2-1瑞利散射 - 27 -
3-2-2米氏散射 - 27 -
3-2-3 散射元件 - 27 -
3-3 配向原理 - 32 -
3-3-1無配向(Non-alignment) - 32 -
3-3-2垂直配向(Vertical alignment) - 33 -
3-3-3水平配向(Homogeneous alignment) - 34 -
3-3-4混成配向(Hybrid alignment) - 35 -
第四章 實驗及相關製程 - 37 -
4-1 實驗材料 - 37 -
4-1-1液晶材料 - 37 -
4-1-2中孔洞氧化矽材料 - 40 -
4-1-3配向材料 - 42 -
4-2 實驗製程 - 43 -
4-2-1中孔洞材料製程 - 43 -
4-2-2液晶混合物調配製程 - 45 -
4-2-3玻璃基板裁切與清洗流程 - 46 -
4-2-4玻璃基板表面塗佈製程 - 46 -
4-2-5液晶盒製作流程 - 47 -
4-3 實驗架設 - 48 -
4-3-1測量液晶元件之光電特性 - 48 -
4-3-2使用偏光顯微鏡觀察液晶盒 - 49 -
4-3-3利用霧度計觀測液晶盒之散射程度 - 49 -
第五章 結果討論 - 51 -
5-1 中孔洞材料結構對液晶散射光閥之影響 - 51 -
5-1-1空心球型與無序中孔柱狀中孔洞材料摻雜正型液晶之比較 - 51 -
5-1-2空心球型材料摻雜雙頻液晶之雙穩態現象 - 56 -
5-2 有序與無序中孔柱材料摻雜正型向列型液晶之比較 - 60 -
5-2-1有序與無序中孔柱材料摻雜正型液晶之操作電壓與穿透率關係 - 60 -
5-2-2有序與無序中孔柱材料摻雜正型液晶之材料濃度與雙穩態關係 - 62 -
5-3 無序中孔柱狀中孔洞氧化矽材料摻雜正型液晶之研究 - 65 -
5-3-1擴孔與未擴孔無序中孔柱材料摻雜正型液晶之雙穩態特性比較 - 65 -
5-3-2不同濃度之擴孔無序中孔柱材料摻雜正型液晶之雙穩態特性比較 - 66 -
5-3-3基板表面塗佈不同薄膜對擴孔無序中孔柱材料摻雜K15之影響 - 74 -
5-3-4擴孔無序中孔柱材料摻雜向列型液晶K15之低操作電壓研究 - 83 -
第六章 結論與未來展望 - 87 -
6-1 結論 - 87 -
6-1-1中孔洞材料結構對液晶散射光閥之影響 - 87 -
6-1-2有序與無序中孔柱材料摻雜正型向列型液晶之比較 - 88 -
6-1-3無序中孔柱中孔洞材料摻雜正型液晶之研究 - 88 -
6-2 未來展望 - 91 -
參考文獻 - 93 -參考文獻 [1] Y. H. Lin, Y. J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5, 111-143 (2017).
[2] W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst 429, 101-110 (2005).
[3] D. Donisi, B. Bellini, R. Beccherelli, R. Asquini, G. Gilardi, M. Trotta, and A. D’Alessandro, “A Switchable Liquid-Crystal Optical Channel Waveguide on Silicon,” IEEE J. Quant. Electron. 46, 762-768 (2010).
[4] D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze‐free light shutters,” Appl. Phys. Lett. 60, 3102-3104 (1992).
[5] 謝依萍,工業材料雜誌 282 期,工研院材化所,新竹市
[6] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd. (2006).
[7] K. T. Cheng, P. Y. Lee, M. M. Qasim, C. K. Liu, W. F. Cheng, and T. D. Wilkinson, “Electrically switchable and permanently stable light scattering modes by dynamic fingerprint chiral textures,” ACS Appl. Mater. Interfaces. 8, 10483-10493 (2016).
[8] P. L. Madhuri, Shuddhodana, Z. M. A. Judeh, and I. Abdulhalim, “Cochleate-doped liquid crystal as switchable metamaterial window mediated by molecular orientation modified aggregation,” Part. Part. Syst. Charact. 37, 2000067 (2020).
[9] O. Lehmam, “Uber Fliessende Kristalle (On flowing crystals),” Z. Phys. Chem. 4, 462-472 (1889).
[10] G. R. V. Hecke, “Soap, Science, and Flat-screen TVs a history of liquid crystals,” Science. 331, 1388-1389 (2011).
[11] https://eprints.soton.ac.uk/153993/1/dunnmur%2526sluckin_ch_2.pdf
[12] https://zh.wikipedia.org/wiki/%E5%A5%A5%E6%89%98%C2%B7%E9%9B%B7%E6%9B%BC
[13] H. Ren, Y. H. Fan, and S. T. Wu, “Prism grating using polymer stabilized nematic liquid crystal,” Appl. Phys. Lett. 82, 3168-3170 (2003).
[14] S. Chandrasekhar, “Recent developments in the physics of liquid crystals,” Contemp. Phys. 29, 527-558 (1988).
[15] B. Bahoadur, “Liquid Crystals-Applications and User,” World Scientific Press, Singapore (1990).
[16] P.G. D. Gennes and J. Prost, “The physics of Liquid Crystals,” 2nd ed., Clarendon Press, Oxford (1995).
[17] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer-Verlag, New York (1994).
[18] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1 (1973).
[19] G. W. Gray, “Thermotropic liquid crystals,” The Society of Chemical Industry, New York (1987).
[20] W. H. De Jeu, “Physical properties of liquid crystalline materials,” Gordon & Breach, New York (1980).
[21] D. K. Yang, X. Y. Huang and Y. M. Zhu, “Bistable cholesteric reflective displays: materials and drive schemes,” Annu. Rev. Mater. Sci. 27, 117-146 (1997).
[22] D. K. Yang and S. T. Wu, “Fundamentals of liquid crystal devices, 2nd edition,” John Wiley & Sons, Ltd. (2014).
[23] A. Yariv and P. Yeh, “Optical waves in crystals,” John Wiley & Sons, Ltd. (1983).
[24] G. R. Fowles, “Introduction to modern Optics,” 2nd ed., University of Utah, New York. (1975).
[25] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystal 2nd,” Oxford University Press, New York. (1933).
[26] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883-899 (1933).
[27] 林莉婕,以中孔洞氧化矽空心球材料混合向列型液晶製備具有記憶效應之智慧玻璃窗 (國立成功大學化學系,2017).
[28] R. O. Prum, H. T. Rodolfo, S. Williamson, J. Dyck, “Coherent light scattering by blue feather barbs,” Nat. Lett. 396, 28-29 (1998).
[29] D. Colton and R. Kress, “Inverse Acoustic and Electromagnetic Scattering Theory,” 2nd, Springer, Berlin (1998).
[30] M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. 28, 837-873 (2003).
[31] S. V. Pasechnik, V. G. Chigrinov, D. V. Shmeliova, “Liquid Crystals: Viscous and Elastic Properties in Theory and Applications,” John Wiley & Sons Press, 321, New York (2009).
[32] D. Meyer, “New technique of aligning liquid crystals on surfaces,” Appl. Phys. Lett. 29, 691-692 (1976).
[33] C. Mauguin, “Sur les cristaux liquids de Lehman,” Bull. Soc. Fr. Min. 34, 71-117 (1911).
[34] M. Suzuki, M. Kakimoto, T. Konishi, Y. Imai, M. Iwamoto and T. Hino, “Preparation of monolayer films of aromatic polyamic acid alkylamine salts at air-water interface,” Chem. Lett. 15, 395-398 (1986).指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2022-8-10 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare