博碩士論文 109226038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.133.156.201
姓名 趙芳胤(Fang-Yin Zhao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 InGaN 量子結構對表面增強拉曼光譜生物 感測器的影響
(The effect of InGaN quantum structures on surface-enhanced Raman spectroscopy biosensors.)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究透過有機金屬化學氣相沉積系統在藍寶石基板上生長 7 層量 子點結構,並且在其表面沈積 Au 奈米顆粒,以利用局部表面電漿 效應製作表面增益拉曼散射(surface-enhanced Raman spectroscopy, SERS)感測結構,檢測 rhodamine 6G (R6G) 與 crystal violet (CV) 分子。我們採用的雙分析物檢測法(bianalyte method),是目前單分子檢測最常用的方式,因為這種方式取決於 大量(1024 筆)的光譜統計結果,而非少數特定的點所產生的閃爍 訊號。雙分析物檢測法的機制,源自於極小的熱點尺寸(< 10nm), 只能偵測到其中一種分析物的拉曼訊號。由於熱點的範圍很小,且 尺寸擴張不易,只有非常稀少的分子能夠產生有效的拉曼訊號。我 們發現,在量子點 SERS 晶片的表面,可以偵測到大量的單分子訊 號,與傳統雙分析物檢測法的結果不同,這是因為量子點表面的 SERS 熱點面積大增,足以覆蓋兩個或多個單分子,可同時增強多個 單分子的拉曼訊號。這種大面積的熱點擴張,是由於每個金奈米粒 子上與下方的量子點產生的局部表面電漿耦合,因此吸附在 SERS 晶片表面的任何單分子,都能落在擴大的熱點範圍內。
摘要(英) Surface-enhanced Raman spectroscopy (SERS) substrates were built with 7-repeat InGaN quantum wells (QWs) to detect single molecules of rhodamine 6G (R6G) and crystal violet (CV). The QWs were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. To induce the localized surface plasmon resonance (LSPR), the QWs were decorated by Au nanoparticles. The bianalyte proof is currently the most adopted approach for single-molecule detection since it is a statistical result from the analysis of thousands of spectra, rather than the conclusion based on the blinking signals observed at few selected spots. The bianalyte principle for single molecule detection is rooted in an inherent nature of SERS, i.e., the ultrasmall (< 10 nm) hotspot (or the metallic nano-cavity), which can only intensify the Raman signal from one of the two analytes. Since it is extremely difficult to control the size of the nano-cavity in a scalable manner, only a very limited portion (< 1%) of the diluted molecules, being closest to the tiny hotspot, can yield detectable Raman signals.
In this work, we demonstrate the single-molecule signals prevailing on the entire probed area, which reverses the rule for single-molecule detection with the bianalyte method. The result was achieved by making the hotspot big enough to cover two or more single molecules, leading to simultaneous enhancement of their Raman signals. The unprecedented hotspot expansion was accomplished by coupling the localized surface plasmons at every Au nanoparticle with the electrons confined within the underneath InGaN quantum dots (QDs). This configuration allows all of the dense Au nanoparticles to become the hotspots. Thus, any single molecule adsorbed on the SERS substrate can be easily detected by the Au-QD complexes, resulting in the preferential observation of mixed events in the bianalyte statistics.
關鍵字(中) ★ 氮化銦鎵
★ 量子結構
★ 表面增強拉曼光譜
關鍵字(英) ★ InGaN
★ quantum structures
★ surface-enhanced Raman spectroscopy
論文目次 論文摘要 ................................................................................................................................VI Abstract................................................................................................................................VII 致謝 ......................................................................................................................................... IX 圖目錄....................................................................................................................................XII 第一章、 緒論 .............................................................................................................. 13
1.1 表面增強拉曼散射的源起與發展 .................................................................. 13
1.2 InGaN 量子結構的磊晶發展 .............................................................................4
1.3 表面增強拉曼散射的發展與應用 .....................................................................7
1.4 研究動機與章節介紹 ...........................................................................................9
第二章、 實驗原理、方法與儀器 ........................................................................... 10
2.1 InGaN 量子結構的磊晶原理 .......................................................................... 10
2.2 表面增強拉曼散射的原理 ............................................................................... 14
2.3 磊晶與退火設備 ................................................................................................. 21
2.4 掃描式電子顯微鏡與拉曼光譜儀 .................................................................. 25
2.5 拉曼光譜分析方法 ............................................................................................ 28
第三章、 分析與討論 ................................................................................................. 31
3.1 InGaN 磊晶層的結構分析 .............................................................................. 31
3.2 金屬奈米顆粒與 InGaN 量子井的交互作用............................................... 36
3.3 R6G、CV 分子的拉曼光譜分析 .................................................................... 43
3.4 掃描式拉曼影像的統計分析 ........................................................................... 49
第四章、 結論與未來發展 ........................................................................................ 58
4.1 結論....................................................................................................................... 58
4.2 未來發展 .............................................................................................................. 59
參考文獻 ............................................................................................................................... 60
參考文獻 [1] Fleischmann, M., Hendra, P. J., & McQuillan, A. J. “Raman spectra of pyridine adsorbed at a silver electrode.” Chemical physics letters 26, 163- 166 (1974)
[2] Shuji Nakamura, et al., “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes” Jpn. J. Appl. Phys. 35, 74-76 (1996).
[3] H. Amano, et al., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer.” Appl. Phys. Lett. 48, 353 (1986)
[4] Hiroshi Amano, et al., “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI).” Jpn. J. Appl. Phys. 28, 2112-2114 (1989).
[5] S. Nakamura, et al., “Thermal annealing effects on p-type Mg-doped GaN films.” Jpn. J. Appl. Phys. 31, 139-142 (1992).
[6] F. M. Steranka, et al., “High power LEDs – Technology status and market applications.” Physica Status Solidi A-Applied Research 194, 380 (2002).
[7] E. F. Schubert, Light-Emitting Diodes, 2nd ed. Cambridge University Press, Cambridge, (2006)
[8] 徐瑞偉,「以奈米異質磊晶術在矽基板上成長半極性氮化銦鎵量子井」,國 立中央大學,碩士論文,民國 103 年。
[9] Wang,S.Y. “Study of surface-enhanced Raman scattering on nano- structured InGaN quantum wells.” MS Thesis, National Central University, (2018).
[10] Jeanmaire, D. L., Van Duyne, R. P., “Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode.” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84, 1-20 (1977)
[11] Albrecht, M. G., Creighton, J. A., “Anomalously intense Raman spectra of pyridine at a silver electrode.” J. Am. Chem. Soc. 99 , 5215- 5217 (1977).
[12] K. Kneipp, “Raman spectroscopy of single molecules.” Single Mol. 4, 291 (2001).
[13] M. Futamata, Y. Maruyama, M. Ishikawa, “Metal nanostructures with single molecule sensitivity in surface enhanced Raman scattering.”
Vibrational Spectroscopy 35, 121 (2004).
[14] Zhu, F.Y. et al., “3D nanostructure reconstruction based on the SEM imaging principle, and applications.” Nanotech. 25, 8 (2014).
[15] Choi, K., Arita, M., & Arakawa, Y., “Selective-area growth of thin GaN nanowires by MOCVD.” Journal of Crystal Growth 357, 58-61 (2012)
[16] Ying, T, “Control of Initial Nucleation by Reducing the V/III Ratio during the early stages of GaN growth.” phys. Stat. sol. 180, 45 (2000). [17] 董冠廷, “光調變液晶於金屬光柵上之表面電漿波瞬態穿透行為之研究”, 國立中山大學, (2017)
[18] Kelly, K. L. et al., “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.” J. Phys. Chem.107, 668-677 (2003).
[19] Jain P.K. et al., “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing.” Nano Letters 8, 4347 (2008).
[20] 陳瑤真, 表面增強拉曼散射光譜應用於生物單分子偵測 國立交通大學 (93).
[21] Kerker, M., Wang, D. S., “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles.” Chew, H. Appl. Opt. 19, 3373(1980).
[23] Brolo, A. G., Irish, D. E., & Smith, B. D., “Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions.” Journal of molecular structure 405, 29-44 (1997). [24] Campion, A., Kambhampati, P., “Surface-enhanced Raman scattering.” Chemical Society Reviews 27, 241 (1998)
[25] Fan Ching, Chien, “Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots.” ACS Appl. Nano Mater. 2614–2620 (2021).
[26] Lombardi, J.R. “The theory of surface-enhanced Raman scattering on semiconductor nanoparticles: toward the optimization of SERS sensors.” Faraday Discuss. 205, 105-120 (2017).
[27] Eric C. et al., “Principles of Surface-Enhanced Raman Spectroscopy.” Elsevier Amsterdam (2009).
[28] Dieringer, J. A. et al., “Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule.” J. Am. Chem. Soc. 131, 849-854 (2009).
[29]Ohkawa, K. et al., “740-nm emission from InGaN-based LEDs on c- plane sapphire substrates by MOVPE.” Journal of crystal growth 343, 13- 16 (2012).
[30]Mukai, T., & Nakamura, S. “Ultraviolet InGaN and GaN single- quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates.” Japanese Journal of Applied Physics 38, 5735 (1999).
[31]Krishna, Seshan., “Handbook of Thin-Film Deposition Processes and Techniques.” Noyes Publications, (2002)
[32] Fu Yun, Zhu, “3D nanostructure reconstruction based on the SEM imaging
Principle, and applications.” IOP, Nanotechnology. 25, (2014)
[33] 網路資料 https://newton.ex.ac.uk/research/biomedical- old/optics/sers.html
[34] 朱哲門, Growth of the twisted bilayer graphene through the two- stage chemical vapor deposition, 國立中央大學, (108)
[35] Sugiura L., “Effects of thermal treatment of low temperature GaN buffer layers on the quality of subsequent GaN layers.” Journal of Applied Physics 82, 4877 (1997).
[36] Yang, G. F. et al., “InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphor-free white light-emitting diodes.” Rev. Phys. 1, 101–119 (2016)
[37] Wang, X. H. et al., “Control performance of a single-chip white light emitting diode by adjusting strain in InGaN underlying layer.” Appl. Phys. Lett. 94, 111913 (2009).
[38] Lai, K. Y. et al., “Effect of m-plane GaN substrate miscut on InGaN/GaN quantum well growth.” J. Cryst. Growth 312, 902−905 (2010). [39] Hildebrandt, P. & Stockburger, M., “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver.” J. Phys. Chem. 88, 5935−5944 (1984).
[40] Sancı, R. & Volkan, M., “Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates.” Sens. Actuators B Chem. 139, 150−155 (2009).
[41] Zrimsek, A. B., Wong, N. L., & Van Duyne, R. P.,“Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof.”The Journal of Physical Chemistry C 120, 5133-5142 (2016).
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明