博碩士論文 109226042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.144.253.161
姓名 林榮勝(Rong-Sheng Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 混合式超穎介面於感光元件之應用
(Application of meta-pigment-hybrid metasurafce for CMOS imaging sensor)
相關論文
★ 從「紅葉」到「黑鷹」:台灣棒球醜聞的文化再現★ 基於音頻訊號隱藏技術之聲波數位傳輸
★ 金屬鹵化鈣鈦礦塊材之光致發光及光致變色特性研究★ 奈米壓印技術製作全介電幾何相位超穎表面
★ 以自製灰階曝光機製作各式微光學元件★ 高效率低深寬比幾何相位超穎介面
★ 以雙面非等向性濕蝕刻製備單晶石英深穿孔★ 奈米壓印技術製作全介電光學繞射元件
★ 全介電幾何相位超穎表面的設計、優化及簡化模型★ 以超穎校正器提升三片式庫克鏡組光學品質之研究
★ 全介電幾何相位超穎表面的 抗反射設計★ 藉由散射強化輻射冷卻發電之研究
★ 以人工智慧模型修復超穎透鏡影像品質之研究★ 基於波導共振之手鏡超穎介面之研究
★ 像素級超穎介面色彩路由器之設計與製作★ 用於屏下螢幕顯示的相位共軛超穎表面設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將利用金屬介電混合超穎介面對目前感光元件系統進行優化。我們分別優化了感光元件的紅外光濾波元件與感光像素的光學效率。
紅外光濾波元件的部分,我們設計了有紅外濾波效果之超穎介面,為金屬介電混合結構,並且與一般紅外光濾波元件使用的有機材吸收材料做結合,而後進行分析。在加上我們設計的超穎介面後,在相同有機吸收材料的使用厚度下,我們將濾波效果波段由850 nm的窄頻,提升至1100 nm,包含了整個矽的能隙範圍。而RGB三個波段的對比度,在有機材料使用厚度1000 nm至300 nm範圍內,提升了2%至11%,從結果來說我們可以減少約100 nm厚的有機材料使用,就達到相似的濾波效果。
第二部分為像素光學效率的優化,我們設計了一介電超穎介面,用來優化以拜耳濾色器方式排列的感光元件光學效率。感光元件再加上設計過的超穎介面後,RGB三波段之光學效率增加了90%、24.4%、36%。
摘要(英) We optimize the current sensor system using a metal-dielectric hybrid metasurface. We have optimized the optical efficiency of the infrared filter and the optical efficiency of the sensor pixels.
For the infrared filter, we have designed a metasurface with an infrared filtering effect, a metal-dielectric hybrid structure, combined it with the organic absorber material used in normal infrared filters, and then analyzed it. With the addition of our design, we have increased the filtering effect from a narrow band of 850 nm to 1100 nm, covering the entire energy gap of silicon, with the same thickness as organic absorber material. The contrast between the three RGB bands has been improved by 2% to 11% over the range of 1000 nm to 300 nm of organic material thickness, which means that we can achieve a similar filtering effect with 100 nm less organic absorber material.
The second part is the optimization of the pixel optical efficiency, where we designed a dielectric metasurface to optimize the optical efficiency of the sensor arranged in a Bayer filter. With the addition of the designed metasurface, the optical efficiency of the RGB tri-band is increased by 90%, 24.4%, and 36%.
關鍵字(中) ★ 超穎介面
★ 感光元件
關鍵字(英) ★ metasurafce
★ imaging sensor
論文目次 摘要 i
Abstract vi
致謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第1章 緒論 1
1-1 研究背景 1
1-2 超穎介面 2
1-3 彩色濾波器之文獻回顧 3
1-4 研究目標 12
第2章 金屬介電混合結構之設計原理 15
2-1 結構選用 15
2-2 金屬材料選用 16
2-3 模擬參數設定 17
第3章 金屬介電混合結構之光譜分析 24
3-1 有機吸收層光譜 24
3-2 改變週期對穿透光譜之影響 25
3-3 改變直徑對穿透光譜之影響 28
3-4 改變介電質厚度對穿透光譜之影響 30
3-5 金屬介電有機染料混合結構之效率對比 33
3-6 樣品量測值與模擬值對比 34
第4章 色彩路由器 43
4-1 色彩路由器簡介 43
4-2 色彩路由器之文獻回顧 45
4-3 色彩路由器結構設計 48
4-4 色彩路由器結果分析 50
第5章 結論 60
參考文獻 62
參考文獻 [1] J. Hong, H. Son, C. Kim, S. E. Mun, J. Sung, and B. Lee, "Absorptive metasurface color filters based on hyperbolic metamaterials for a CMOS image sensor," Opt Express, vol. 29, no. 3, pp. 3643-3658. (2021)
[2] X. Z. Chen, L. L. Huang et al., "Dual-polarity plasmonic metalens for visible light," Nat Commun, vol. 3, 1198. (2012).
[3] Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. W. Liu, and T. S. Mayer, "Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates," Sci Rep, vol. 4, 7511. (2014)
[4] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[5] V. E. Babicheva, and A. B. Evlyukhin, "Resonant Lattice Kerker Effect in Metasurfaces With Electric and Magnetic Optical Responses," Laser & Photonics Reviews, vol. 11, no. 6. (2017)
[6] G. X. Li, S. M. Chen et al., "Continuous control of the nonlinearity phase for harmonic generations," Nature Mater, vol. 14, pp. 607–612. (2015)
[7] F. Falcone, T. Lopetegi et al., "Babinet Principle Applied to the Design of Metasurfaces and Metamaterials," Phys Rev Lett, vol. 93, 197401. (2004)
[8] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[9] C. Y. Yu, Q. C. Zeng, C. J. Yu, C. Y. Han, and C. M. Wang, "Scattering Analysis and Efficiency Optimization of Dielectric Pancharatnam–Berry-Phase Metasurfaces," Nanomaterials, vol. 11, no. 3: 586. (2021)
[10] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, " “Extraordinary optical transmission through sub-wavelength hole arrays, " Nature, vol. 391, no. 6668, pp. 667-669. (1998).
[11] H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express, vol. 15, pp. 15457-15463. (2007)
[12] S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic Color Filters for CMOS Image Sensor Applications," Nano Lett, vol. 12, no. 8, pp. 4349–4354. (2012)
[13] Q. Chen, and D. R. S. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express, vol. 18, pp. 14056-14062. (2010)
[14] B. B. Zeng, Y. K. Gao, and F. J. Bartoli, "Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters," Scientific Reports, vol. 3. (2013)
[15] T. Xu, Y. K. Wu, X. G. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nature Communications, vol. 1. (2010)
[16] C. S. Park, V. R. Shrestha, W. J. Yue, S. Gao, S. S. Lee, E. S. Kim, and D. Y. Choi, "Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks," Scientific Reports, vol. 7. (2017)
[17] M. Ye, L. B. Sun, X. L. Hu, B. Shi, B. B. Zeng, L. S. Wang, J. Zhao, S. M. Yang, R. Z. Tai, H. J. Fecht, J. Z. Jiang, and D. X. Zhang, "Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks," Optics Letters, vol. 40, no. 21, pp. 4979-4982. (2015)
[18] J. Y. Tian, H. Luo, Q. Li, X. L. Pei, K. K. Du, and M. Qiu, "Near-Infrared Super-Absorbing All-Dielectric Metasurface Based on Single-Layer Germanium Nanostructures, " Laser & Photonics Reviews, vol. 12, no. 9. (2018)
[19] K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, "Tunable Color Filters Based on Metal-Insulator-Metal Resonators, " Nano Letters, vol. 9, no. 7, pp. 2579-2583. (2009)
[20] J. Bellessa, C. Symonds, K. Vynck, L. Beaur, A. Brioudec, and A. Lemaitre, "Giant Rabi splitting in metal/semiconductor nanohybrids," Superlattices and Microstructures, vol. 49, no. 3, pp. 209-216. (2011)
[21] S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, and M. Suzuki, "Efficient colour splitters for high-pixel-density image sensors," Nature Photonics, vol. 7, no. 3, pp. 240-246. (2013)
[22] M. Miyata, M. Nakajima, and T. Hashimoto, "High-Sensitivity Color Imaging Using Pixel-Scale Color Splitters Based on Dielectric Metasurfaces," Acs Photonics, vol. 6, no. 6, pp. 1442-1450. (2019)
[23] M. J. Chen, L. Wen, D. H. Pan, D. R. S. Cumming, X. G. Yang, and Q. Chen, “Full-color nanorouter for high-resolution imaging,” Nanoscale, vol. 13, no. 30, pp. 13024-13029. (2021)
[24] Y. F. Yu, A. Y. Zhu, R. Paniagua-Dominguez, Y. H. Fu, B. Luk′yanchuk, and A. I. Kuznetsov, "High-transmission dielectric metasurface with 2 phase control at visible wavelengths," Laser & Photonics Reviews, vol. 9, no. 4, pp. 412-418. (2015)
[25] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature Nanotechnology, vol. 10, no. 11, pp. 937-943. (2015)
指導教授 王智明(Chih-Ming Wang) 審核日期 2022-6-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明