博碩士論文 109226045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.97.109
姓名 王上溥(Shang-Pu Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製
(Dispersion Engineering of Silicon Nitride Microring Resonators via Reconstructable SU-8 Polymer Cladding)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 可重構SU-8之波導製程與量測研究★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究
★ 微環形共振腔非線性效應與壓縮光之研究★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽光子技術利用積體光路取代傳統電路,提供了一個高傳輸速度、寬頻寬、低損耗的資料傳輸渠道。而群速度色散在光通訊、非線性光學、超快光學等領域中扮演一個重要的角色。本論文透過在氮化矽波導上疊加不同比例之聚合物披覆層,以達到靈活調製色散的目的。首先,利用有限元法來模擬不同波導截面設計之波導色散,並觀察在不同寬度、高度和披覆層材料下波導色散的變化。第二部分為色散量測系統之建立,在本論文研究中利用光纖之馬赫-陳爾德干涉儀來作為參考頻譜,以確認可調式雷射在掃描時穩定度,並且建立一個解析度優於雷射之頻率軸。
在實驗上,將空氣、氧化物和聚合物披覆層疊加在共振腔上,並對波導色散進行比較。在波導上疊加聚合物披覆層後,可以將波導色散從−143 ps/nm-km調製成−257 ps/nm-km。除此之外,透過去除聚合物的方法來實現可重構之聚合物披覆層,波導色散會還原至初始色散大小,以及對品質因子而言也沒有明顯的影響。接著利用微影技術在環形波導上疊加不同覆蓋比例之披覆層。測得的色散與覆蓋比例呈線性相關,與模擬數據具有良好的一致性。因此可以通過控制聚合物披覆層的覆蓋比例,使得波導色散在上述色散變化區間內進行調製。最後,將波導高度提升至700 nm的波導,其色散為66 ps/nm-km,為異常色散。接著在波導上疊加聚合物披覆層,其波導色散大小為-508 ps/nm-km,為正常色散。因此可以透過疊加聚合物披覆層的方式來使得具異常色散之共振腔調製成正常色散。
本論文研究提供一個靈活、新穎的方法來製造一具多功能性的積體光路,以滿足不同應用對色散的要求。
摘要(英) In silicon photonics, integrated optical circuit replaces electrical circuit, and it provide a data transmission channel with high transmission speed, wide bandwidth, and low loss. Moreover, group velocity dispersion (GVD) is an important physical quantity in many photonic applications, such as optical communication, nonlinear optics, and ultrafast optics. In this thesis, we propose a flexible way to engineer waveguide dispersion with patterning different coverage ratios of polymer cladding layer on silicon nitride waveguides. First, the finite element method is used to simulate the waveguide dispersion of different waveguide cross-section designs and to observe the changes of the waveguide dispersion under different widths, heights, and cladding materials. The second part is the establishment of the dispersion measurement system. Fiber-based Mach-Zehnder interferometer is used as the reference spectrum to confirm the stability of the tunable laser during scanning and to build a calibrated frequency axis, which has a better resolution than that of the laser.
Experimentally, air, oxide and polymer cladding layers are coated on the microring resonaters and the waveguide dispersion is measured accordingly. The waveguide dispersion can be tuned from −143 ps/nm-km to −257 ps/nm-km by integrating the SU-8 polymer as the outer cladding layer. In order to realize the reconstructability of polymer cladding, we remove the polymer cladding layer. After stripping the polymer layer, the waveguide dispersion can be recovered to the original value, and there is no obvious impact on the quality factor. In addition, different coverage ratios of cladding layer are patterned on the microrings with traditional UV contact lithography. The measured dispersion shows linear dependence to the coverage ratio, showing good agreement with the simulated data. Thus, the waveguide dispersion can be engineered within a varied dispersion range by controlling the coverage ratio of the polymer cladding layer. Last, by increasing the waveguide height to 700 nm, the measured dispersion is tailored to be 66 ps/nm-km, which is in anomalous dispersion. After 100% coverage ratio of polymer cladding layer is patterned on microring, the measured dispersion is tuned to be -508 ps/nm-km, which is in normal dispersion. This provides a flexible way to engineer the dispersion. The dispersion can be tuned from anomalous to normal by superimposing different coverage ratios of polymer cladding layer on the waveguide.
The research presented in this thesis provides a flexible and novel approach to fabricate a multifunctional integrated optical circuit to meet the dispersion requirements of different applications.
關鍵字(中) ★ 微環形共振腔
★ 色散調製
★ 聚合物披覆層
關鍵字(英) ★ Microring resonator
★ Dispersion engineering
★ Polymer cladding
論文目次 口試委員會審定書
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 色散基礎背景 1
1-2 微環形共振腔 3
1-3 論文概要 5
第二章 波導色散模擬 7
2-1 模擬工具介紹 7
2-1-1 有限元法(FEM)計算原理 7
2-1-2 MPB計算原理 9
2-1-3 模擬結果比較 11
2-2 不同結構設計的波導色散模擬 11
2-2-1 波導高度與色散的關係 12
2-2-2 波導寬度與色散的關係 13
2-2-3 添加披覆層對色散的影響 13
2-3 不同披覆層比例的波導色散計算 15
第三章 色散量測系統建立 18
3-1 色散量測方法 18
3-2 量測系統與架設圖 19
3-3 光纖之馬赫-陳爾德干涉儀 21
3-3-1 干涉儀原理與建立目的 22
3-3-2 干涉頻譜量測結果 25
3-4 波導色散量測與模擬結果比對 28
3-4-1 量測結果比對 29
3-4-2 干涉儀之色散對波導色散量測結果影響 30
3-4-3 光纖長度誤差對波導色散影響 31
3-4-4 高階模態對波導色散計算影響 33
第四章 微環形共振腔之製程與色散量測結果 36
4-1 微環形共振腔製程 36
4-1-1 製程流程 36
4-1-2 共振之品質因子 38
4-1-3 元件之傳輸頻譜與品質因子 41
4-2 色散與自由光譜區(free spectral range)關係 42
4-3 色散量測結果 44
4-3-1 不同材料披覆層之波導色散比較 44
4-3-2 去除聚合物披覆層之波導色散分析 46
4-3-3 疊加不同比例之聚合物披覆層對波導色散影響 49
4-3-4 不同高度之共振腔色散量測 53
第五章 結論與未來展望 58
參考文獻 59
參考文獻 [1] A. C. Turner et al., "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Optics express, vol. 14, no. 10, pp. 4357-4362, 2006.
[2] D. T. Tan, A. M. Agarwal, and L. C. Kimerling, "Nonlinear photonic waveguides for on‐chip optical pulse compression," Laser & Photonics Reviews, vol. 9, no. 3, pp. 294-308, 2015.
[3] L. Eldada, "Optical communication components," Review of Scientific Instruments, vol. 75, no. 3, pp. 575-593, 2004.
[4] C.-C. Chang and A. M. Weiner, "Fiber transmission for sub-500-fs pulses using a dispersion-compensating fiber," IEEE journal of quantum electronics, vol. 33, no. 9, pp. 1455-1464, 1997.
[5] A. B. Dar and R. K. Jha, "Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation," Optical and Quantum Electronics, vol. 49, no. 3, pp. 1-35, 2017.
[6] K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Physical review letters, vol. 56, no. 2, p. 135, 1986.
[7] P. Dong et al., "Wavelength-tunable silicon microring modulator," Optics express, vol. 18, no. 11, pp. 10941-10946, 2010.
[8] S. Manipatruni, K. Preston, L. Chen, and M. Lipson, "Ultra-low voltage, ultra-small mode volume silicon microring modulator," Optics express, vol. 18, no. 17, pp. 18235-18242, 2010.
[9] P. Zheng, X. Xu, G. Hu, R. Zhang, B. Yun, and Y. Cui, "Integrated multi-functional optical filter based on a self-coupled microring resonator assisted mzi structure," Journal of Lightwave Technology, vol. 39, no. 5, pp. 1429-1437, 2021.
[10] Q. Cheng et al., "Ultralow-crosstalk, strictly non-blocking microring-based optical switch," Photonics Research, vol. 7, no. 2, pp. 155-161, 2019.
[11] H. Jia et al., "Five-port optical router based on silicon microring optical switches for photonic networks-on-chip," IEEE Photonics Technology Letters, vol. 28, no. 9, pp. 947-950, 2016.
[12] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Optics express, vol. 15, no. 12, pp. 7610-7615, 2007.
[13] X. Tu, S.-L. Chen, C. Song, T. Huang, and L. J. Guo, "Ultrahigh Q polymer microring resonators for biosensing applications," IEEE Photonics Journal, vol. 11, no. 2, pp. 1-10, 2019.
[14] RSoft FemSIM, RSoft Products. Synopsys, Inc., Mountain View, CA, USA.
[15] https://mpb.readthedocs.io/en/latest/Developer_Information/ (accessed.
[16] J. C. Boggio et al., "Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization," JOSA B, vol. 31, no. 11, pp. 2846-2857, 2014.
[17] D. Tan, K. Ikeda, P. Sun, and Y. Fainman, "Group velocity dispersion and self phase modulation in silicon nitride waveguides," Applied Physics Letters, vol. 96, no. 6, p. 061101, 2010.
[18] J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, "Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition," Optics express, vol. 20, no. 25, pp. 27661-27669, 2012.
[19] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nature communications, vol. 10, no. 1, pp. 1-6, 2019.
[20] G. Moille, D. Westly, N. G. Orji, and K. Srinivasan, "Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion," Applied Physics Letters, vol. 119, no. 12, p. 121103, 2021.
[21] E. Sahin, K. Ooi, C. Png, and D. Tan, "Large, scalable dispersion engineering using cladding-modulated Bragg gratings on a silicon chip," Applied Physics Letters, vol. 110, no. 16, p. 161113, 2017.
[22] P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, "SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems," Electrophoresis, vol. 28, no. 24, pp. 4539-4551, 2007.
[23] A. Mata, A. J. Fleischman, and S. Roy, "Fabrication of multi-layer SU-8 microstructures," Journal of micromechanics and microengineering, vol. 16, no. 2, p. 276, 2006.
[24] I. Mehdi et al., "IEEE Transactions on Terahertz Science and Technology."
[25] V. C. Pinto, P. J. Sousa, V. F. Cardoso, and G. Minas, "Optimized SU-8 processing for low-cost microstructures fabrication without cleanroom facilities," Micromachines, vol. 5, no. 3, pp. 738-755, 2014.
[26] D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides," IEEE photonics technology letters, vol. 21, no. 4, pp. 254-256, 2009.
[27] M. M. Ariannejad, I. S. Amiri, H. Ahmad, and P. Yupapin, "A large free spectral range of 74.92 GHz in comb peaks generated by SU-8 polymer micro-ring resonators: simulation and experiment," Laser Physics, vol. 28, no. 11, p. 115002, 2018.
[28] R. R. Singh, "Dispersion tailoring of silicon nanowire optical rectangular waveguide (SNORW)," SN Applied Sciences, vol. 2, no. 3, pp. 1-8, 2020.
[29] [Online]. Available: https://refractiveindex.info/.
[30] H. Jung, M. Poot, and H. X. Tang, "In-resonator variation of waveguide cross-sections for dispersion control of aluminum nitride micro-rings," Optics Express, vol. 23, no. 24, pp. 30634-30640, 2015.
[31] O. Schwelb, "Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview," Journal of Lightwave Technology, vol. 22, no. 5, pp. 1380-1394, 2004.
[32] S. Fujii and T. Tanabe, "Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation," Nanophotonics, vol. 9, no. 5, pp. 1087-1104, 2020.
[33] S. Diddams and J.-C. Diels, "Dispersion measurements with white-light interferometry," JOSA B, vol. 13, no. 6, pp. 1120-1129, 1996.
[34] N. Y. Dmitriev, K. N. Minkov, N. M. Kondratiev, V. E. Lobanov, A. N. Danilin, and I. A. Bilenko, "Universal Approach for Accurate Measurement of Dispersive Characteristics of Optical Microresonators," in Laser Science, 2021: Optical Society of America, p. JTu1A. 117.
[35] P. Del′Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, "Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion," Nature Photonics, vol. 3, no. 9, pp. 529-533, 2009.
[36] K. Twayana, Z. Ye, Ó. B. Helgason, K. Vijayan, and M. Karlsson, "Frequency-comb-calibrated swept-wavelength interferometry," Optics Express, vol. 29, no. 15, pp. 24363-24372, 2021.
[37] Y. Liu et al., "Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation," optica, vol. 1, no. 3, pp. 137-144, 2014.
[38] Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, "Fast light in silicon ring resonator with resonance-splitting," Optics express, vol. 17, no. 2, pp. 933-940, 2009.
[39] D. G. Rabus and C. Sada, "Ring resonators: Theory and modeling," in Integrated Ring Resonators: Springer, 2020, pp. 3-46.
[40] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Optics Express, vol. 15, no. 17, pp. 10553-10561, 2007.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明